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CHAPTER 4

X-RAY TRANSMISSION
COMPUTED TOMOGRAPHY

W SWINDELL AND S WEBB

4.1 THE NEED FOR SECTIONAL IMAGES

When we look at a chest x-ray (see figure 4.1), certain anatomical
features are immediately apparent. The ribs, for example, show up as a
light structure because they attenuate the x-ray beam more strongly than
the surrounding soft tissue, so the film receives less exposure in the
shadow of the bone. Correspondingly, the air-filled lungs show up as
darker regions.

\

Figure 4.1 Typical chest x-radiograph.

A simple calculation illustrates the type of structure that one could
expect to see with this sort of conventional transmission radiograph. The
linear attenuation coefficients for air, bone, muscle and blood are
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Hair = 0
Hbone = 0.48 cm ™!
Ueuscle = 0.180 cm ™!
Ublood = 0.178 cm ™!

for the energy spectrum of a typical diagnostic x-ray beam. Thus, for a
slab of soft tissue with a 1 cm cavity in it, the results of table 4.1 follow
at once using Beer’s expression for the attenuation of the primary beam,
namely

I(x) = Iyexp(—ux). 4.1

Table 4.1 Contrast in a transmission radiograph.

Material in I(x)/I, Difference (%) with
cavity (x =1cm) respect to muscle
Air 1.0 R +20
Blood 0.837 + 0.2
Muscle 0.835 0
Bone 0.619 —26

X-ray films usually allow contrasts of the order of 2% to be seen
easily, so a 1 cm thick rib or a 1 cm diameter air-filled trachea can be
visualised. However, the blood in the blood vessels and other soft-tissue
details, such as details of the heart anatomy, cannot be seen on a
conventional radiograph. In fact, to make the blood vessels visible, the
blood has to be infiltrated with a liquid contrast medium containing
iodine compounds; the iodine temporarily increases the linear attenua-
tion coefficient of the fluid medium to the point where visual contrast is
generated (see §3.8.1, where contrast media are discussed in detail).
Consideration of photon scatter further degrades contrast (see §§2.4.1
and 3.6.1).

Another problem with the conventional radiograph is the loss of
depth information. The three-dimensional structure of the body has
been collapsed, or projected, onto a two-dimensional film and, while
this is not always a problem, sometimes other techniques such as
stereoscopic pairs of radiographs or conventional tomography (see
§3.3.1) are needed to retrieve the depth information. Some early history
of conventional tomography is provided by MacDonald (1981), and
different geometries and equipment are reviewed by Coulam et al
(1981).

It is apparent that conventional x-radiographs are inadequate in these
two respects, namely the inability to distinguish soft tissue and the
inability to resolve spatially structures along the direction of x-ray
propagation.
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4.2 THE PRINCIPLES OF SECTIONAL IMAGING

With computed tomography, a planar slice of the body is definéd and
x-rays are passed through it only in directions that are contained within,
and are parallel to, the plane of the slice (see figure 4.2). No part of the
body that is outS1de of the slice is interrogated by the x-ray beam, and
this eliminates the problem of ‘depth scrambling’. The cr image is as
though the slice (which is usually a few millimetres thick) had been
physically removed from the body and then radiographed by passing
x-rays through it in a direction perpendicular to its plane. The resulting
images show the human anatomy in section with a spatial resolution of
about 1 mm and a density (linear attenuation coefficient) discrimination
of better than 1% (see figure 4.3). This chapter is about the method of
converting the x-ray measurements of figure 4.2 into the image shown in
figure 4.3.
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Figure 4.2 Simple scanning system for transaxial tomography. A
pencil beam of x-rays passes through the object and is detected on
the far side. The source-detector assembly is scanned sideways to
generate one projection. This is repeated at many viewing angles
and the required set of projection data is obtained. (Reproduced
from Barrett and Swindell (1981).)

There are many good reviews on the subject of computed tomogra-
phy: see, for example, Brooks and Di Chiro (1975, 1976), Kak (1979)
and Zonneveld (1979). The commercial development of x-ray computed
tomography has been described as the most important breakthrough in
diagnostic radiology since the development of the first planar radio-
graph.
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(@)

(b)

Figure 4.3 (a) cr image of a head taken at eye level. (b) Abdomin-
al section through the kidneys.

4.2.1 Scanner configurations

As far as the patient is concerned, the cr scanner is a machine with a
large hole in it. The body or the head is placed inside the hole in order
to have the pictures taken (see figure 4.4). The covers of the machine
hide a complicated piece of machinery, which has evolved through
several versions since its inception (Hounsfield 1973). Here follows a
short description of this development.

A finely collimated source defines a pencil beam of x-rays, which is
then measured by a well collimated detector. This source-detector
combination measures parallel projections, one sample at a time, by
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stepping linearly across the patient. After each prejection, the gantry
rotates to a new position for the next projection (see figure 4.5). Since
there is only one detector, calibration is easy and there is no problem
with having to balance multiple detectors; also costs are minimised. The
scatter rejection of this first-generation system is higher than that of any
other generation because of the two-dimensional collimation at both
source and detector. The system is slow, however, with typical acquisi-
tion times of 4 min per section, even for relatively low-resolution
images.

Figure 4.4 Typical cT scanner.

Data gathering was speeded up considerably in the second generation.
Here a single source illuminated a bank of detectors with a narrow
(~10°) fan beam of x-rays (see figure 4.6). This assembly traverses the
patient and measures N parallel projections simultaneously (N is the
number of detectors). The gantry angle increments by an angle equal to
the fan angle between consecutive traverses. These machines can
complete the data gathering in about 20s. If the patient can suspend
breathing for this period, the images will not be degraded by motion
blur, which would otherwise be present in chest and abdominal images.

In third-generation systems, the fan beam is enlarged to cover the
whole field of view (see figure 4.7). Consequently, the gantry needs only
to rotate, which it can do without stopping, and the data gathering can
be done in 4-5 s. It is relatively easy for a patient to remain still for this
length of time. Detector balancing is critical for this geometry if circular
‘ring’ artefacts are to be avoided. Xenon detectors are often chosen
because of their stable nature of operation.

Fourth-generation systems use a stationary ring of typically 1000
detectors and only the source rotates (see figure 4.8). Scan speeds
remain fast and the ring artefact is overcome. Since every detector is, at
some time during the scan, sampling the unattenuated x-ray beam,
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Figure 4.5 Schematic representation of a first-generation crt scanner. It
utilises a single pencil beam and single detector for each scan slice. The x-ray
source and detector are passed transversely across the object being scanned,

with incremental rotations of the system at the end of each transverse
motion. (Reproduced from Maravilla and Pastel (1978).)

calibration in ‘real time’ can be performed.

In the race for speed, the next clinically useful break point comes at
around 0.1 s for the data acquisition time. This permits cardiac motion
to be frozen. This will allow clearer images not only of the heart but
also of organs that are well perfused with blood, such as the liver, and
which pulsate in synchrony to the heart beat. Mechanical movement is
ruled out and multiple stationary sources are prohibitively cumbersome
and expensive. The fifth-generation device (Peschmann et al 1985) has
no moving parts. A target of the x-ray tube follows the shape of a
circular arc of approximately 210°. The patient is placed at the centre of
this arc and the effective source of x-rays is made to move by scanning
the electron beams around the circumference of the target (see figure
4.9). Scan times can thus be reduced to a few milliseconds.
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Special x-ray sources and detectors have been designed and manufac-
tured for use in cT scanners. Each generation imposes its own special
requirements. There are also special requirements imposed on the
power supplied for the x-ray tubes, especially with regard to stability. A
good review of these problems is provided by Webb (1987). The
properties of some photon scintillation detectors are shown later in table
6.1.

In addition to the gantry, which houses the scanning mechanism, x-ray
sources and detectors, there are other essential components to a cr
system. These include the computer, which controls the hardware and
processes the data, and the operator’s viewing console. These parts of
the system will not be covered in this book.

Multiple Degres Increments

Figure 4.6 Schematic representation of a second-generation crt scanner.
A narrow-angle fan beam of x-rays and multiple detectors record
several pencil beams simultaneously. As the diverging pencil beams
pass through the patient at different angles, this enables the gantry to
rotate in increments of several degrees and results in markedly de-
creased scan times of 20s or less. (Reproduced from Maravilla and
Pastel (1978).)
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360" Continuous Scan
Figure 4.7 Schematic representation of a third-generation cr scanner
in which a wide-angle fan beam of x-rays encompasses the entire
scanned object. Several hundred measurements are recorded with
each pulse of the x-ray tube. (Reproduced from Maravilla and Pastel
(1978).)
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Figure 4.8 Schematic representation of a fourth-generation ct scan-
ner. There is a rotating x-ray source and a continuous 360° ring of
detectors, which are stationary. Leading and trailing edges of the fan
beam pass outside the patient and are used to calibrate the detec-
tors. (Reproduced from Maravilla and Pastel (1978).)

4.2.2 Line integrals

The data needed to reconstruct the image are transmission measure-
ments through the patient. Assuming, for simplicity, that we have (i) a
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very narrow pencil beam of x-rays, (ii) monochromatic radiation and
(iif) no scattered radiation reaching the detector, then the transmitted
intensity is given by

1o(x) = 136 exp{~ [ ulx, y] ay ) +2)

where u[x, y] is the two-dimensional distribution of the linear attenua-
tion coefficient, ¢ and x' define the position of the measurement and
I3(x') is the unattenuated intensity (see figure 4.10). The x'y’ frame
rotates with the x-ray source position such that the source is on the y’
axis. Equation (4.2) is simply an extension of Beer’s law (equation
(4.1)) to take the spatial variation of u into account. Frequently u[x, y]
is simply referred to, somewhat loosely, as the density distribution, and
we shall adopt that practice here. In this context, ‘density’ refers to
electron density (electrons/cm?), which for most practical cT scanners is
a parameter found to be related to attenuation coefficient by a series of
linear relationships (see e.g. Parker et al 1980).

Data acquisition
-—-— Detectors

Focus coil X-ray beam

Electron beam flection coil

S

' N .
[Vacuum pumpsl Couch S

Target rings

3

Figure 4.9 Imatron CT-100 ciné ct scanner; longitudinal view. Note the use of
four target rings for multislice examination. (Courtesy of Imatron.)

A single projection of the object 1,(x’) is defined as
Ao(x') = ~In[1y(x')/I3(x")]
= J’_ j_w#[x, y]6(xcos¢ + ysing — x') dx dy (4.3)

where, now, the Dirac delta function 6 picks out the path of the line
integral, since the equation of AB is x' = xcos¢ + ysin ¢.

Equation (4.3) expresses the linear relationship between the object
function pfx, y] and the measured projection data A,. The problem of
reconstructing is precisely that of inverting equation (4.3), i.e. recover-
ing pfx, y] from a set of projections A,(x’).
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Figure 4.10 Projections are defined as the negative logarithm of the
fractional x-ray transmittance of the object, A,(x) =
— In[I4(x")/I3(x")]. ¢ is the angle at which the projection data are
recorded.

4.2.3 Projection sets

The quantity A4(x’) in equation (4.3) may be interpreted as the
one-dimensional function Ay of a single variable x’' with ¢ as a
parameter, and with the arrangement of figure 4.10 this Ag(x') is
referred to as a parallel projection. To gather this sort of data, a single
source and detector are translated across the object at an angle ¢,
producing A4 (x’). The gantry is then rotated to ¢, and A,(x') is
obtained, and so on for many other angles. As we mentioned in the
previous section, the inefficiencies of this first-generation scanning are
no longer tolerated in commercial systems, and the projection data are
measured using a fan beam. In this case, the distance x’ is measured in
a curvilinear fashion around the detector from the centre of the array
and ¢ is the angle of the central axis of the projection (see figure 4.11).
In what follows we analyse the case for parallel projections simply
because it is the easier case to study. The added complexity of fan beam
geometry obscures the basic solution method, while adding but little to
the intellectual content (see also end of §4.3.1).

In practice, the x-ray source and x-ray detector are of finite size. The
projection data are better described as volume integrals over long, thin
‘tubes’ rather than as line integrals. One effect of this is to average over
any detail within the object that is small compared to the lateral
dimensions of the tube. The highest spatial frequencies that would be
present in a ‘perfect’ projection are thus not measurable and the object
appears to be ‘band-limited’ because of this low-pass filtering by the
measuring system. This has important consequences, which will be
discussed later (§4.3).
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Array of x-ray detectors

X-ray source

Figure 4.11 For second- and higher-generation systems, data are
collected using the fan-beam geometry as shown here.

4.2.4 Information content in projections and the central section theorem

Up to this point, we have assumed that equation (4.3) has a solution.
We shall now show that a complete set of projection data do indeed
have enough information contained to permit a solution. In doing so, we
shall point the way to the method of solution that is most commonly
used in x-ray CT scanners.

First we specify the notation. The Fourier transform of the density
distribution ufx, y] is M[{, n]. The square brackets serve to remind us
that the coordinates are Cartesian. In polar coordinates, the correspond-
ing quantities are uP(r, 8) and M?(p, ¢). (M is upper-case Greek ‘mu’.)
The various quantities defined in the x'y’ frame are p'[x’, y'], M’'[{’,
n'], etc. It is not necessary to use the prime on A4( ), etc, since the
different functional form of A for each ¢ value is implicitly denoted by
the subscript ¢.

The angular orientation of the [x, y] reference frame is arbitrary, so
without loss of generality we can discuss the projection at ¢ = 0. From
equation (4.3) we have

Ao(x") = f_m j_m y[x, y]o(x — x') dx dy. (4.4)
The integration over x is trivial, i.e.
ho(r) = [z, y] dy 4.5)

which is an obvious result anyway.

The next step is to take the one-dimensional Fourier transform of
both sides of equation (4.5). Readers unfamiliar with the basic concepts
of the Fourier transform may care to study the appendix to Chapter 12
(812.9) at this point. Writing the transformed quantity as Ag¢(§), we
have
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+

A = [ Aolx) exp(~2riL) dx

= fx fx!‘[x’ ylexp[=2miCx + my)l dy dx | . (4.6)

An extra term exp(-2miny) has been slipped into the Fourier kernel on
the right-hand side (RHs), but the requirement that the integral be
evaluated for n = 0 makes this a null operation. However, in this form
the RHs of equation (4.6) is recognisable as the two-dimensional Fourier
transform M|[Z, 5] evaluated at = 0, so equation (4.6) can be rewritten

as
Ao(d) = M[Z, 0]. 4.7

Because the Cartesian { axis (i.e. n = 0) coincides with the polar
coordinate p at the same orientation, equation (4.7) can be written as

Ao(£) = MP(p, 0). (4.8)

This is an important result. In words, it says that if we take the
one-dimensional Fourier transform of the projection A¢, the result Aq is
also the value of the two-dimensional transform of u along a particular
line. This line is the central section that is oriented along the direction
¢ = 0. Now we can restore the arbitrary angular origin of the reference
frames and state the general result, namely

Ag(8) = M'[T, 7]
= MP(p, ¢). (4.9)

This important result is known as the central section or central slice
theorem. To illustrate the theorem, consider a general, bounded object.
This object can always be synthesised from a linear superposition of all
of its two-dimensional spatial frequency components. Now, consider just
one of those cosinusoidal frequency components (see figure 4.12(a)).
Only when the projection direction is parallel to the wave crests does
the projection differ from zero. However, for that particular direction,
the full cosine distribution is projected onto the x’ axis. The Fourier
transform of this one component is shown in figure 4.12(b). The original
object is a superposition of many component waves of various phases,
periods and directions, and it follows that only those waves that are
parallel to the first one will have their transforms located on the &' axis,
and that these are the only waves that will change the form of A4(x’).
Thus, the transform of the slice is identical to the corresponding section
(or slice) of the two-dimensional transform.

4.2.5 Reconstruction by two-dimensional Fourier methods

It now follows that a complete set of projections contains the informa-
tion that is needed to reconstruct an image of u. This can be seen by
considering a large number of projections at evenly spaced angles ¢,,.
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Figure 4.12 (a) A general object distribution u(r) can be decom-
posed into Fourier components of the form sin (2mpr) or cos (2mpr).
One of the latter is depicted here. There is only one direction ¢ for
which the projection of this component is non-zero, and at this
particular ¢ the component is fully mapped onto the projection. (b)
The Fourier transform of this component is a pair of & functions
(shown here by dots) located on the & axis. (Reproduced from
Barrett and Swindell (1981).)

The value of MP(p, ¢) can then be determined along the radial spokes
of the same orientations. If MP is thus defined on a sufficiently well
sampled basis (more about this later—§4.5.1), then y[x, y] can be
obtained by a straightforward two-dimensional transformation of M,
~which can be obtained from MP by means of interpolation from the
polar to the Cartesian coordinate systems.

It is worth noting that the projections must be taken over a full 180°
rotation without any large gap in angle. If there are large gaps, there
will be corresponding sectors in Fourier space that will be void of data.
The object p cannot faithfully be constructed from its transform M if
this latter is incompletely defined. We shall see in Chapter 6 that certain
classes of positron emission tomography scanners suffer the problem of
limited-angle projection data.

The solution method just outlined is not a very practicable one for a
number of reasons, but the discussion demonstrates that, in principle, an
object can be reconstructed from a sufficiently complete set of its
projections. The commonly used ‘filtered backprojection’ method is
described in §4.3.
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4.2.6 Displaying the image

The reconstruction of u is usually made on a rectangular array, where
each element or pixel has a value u; ascribed to it (1 < i < I). Before
these data are d1splayed on a video screen, it is conventional to rescale
them in terms of a ‘ct number’, which is defined as

Uitissue — Hwater

CT number = ———— —  x 1000. (4.10)
Mwater

Thus the ct number of any particular tissue is the fractional difference
of its linear attenuation coefficient relative to water, measured in units
of 0.001, i.e. tenths of a per cent. The cT numbers of different soft
tissues are relatively close to each other and relatively close to zero.
. However, provided that the projection data are recorded with sufficient
accuracy, then different soft tissues can be differentiated with a high
degree of statistical confidence. Similar tissues, which could not be
resolved on conventional transmission x-radiographs, can be seen on cT
reconstructions. Small differences in cT number can be amplified visual-
ly by increasing the contrast of the display. The output brightness on the
screen is related to the cr number by means of a level and a width
control (see figure 4.13). These windowing controls can be varied by the
operator while looking at the image, so the small range of cT numbers
corresponding to the soft tissues within the body can be selected to drive
the screen from black to white.
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Figure 4.13 The ‘windowing’ facility allows the display brightness
range to be fully modulated by any desired range of crt values as
determined by adjusting the window ‘level’ and ‘width’.

4.3 FOURIER-BASED SOLUTIONS: THE METHOD OF
CONVOLUTION AND BACKPROJECTION

The mathematics of transmission computed tomography, or the theory
of reconstruction from projections, has itself acquired the status of
attracting attention as an independent research area. The literature is
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enormous and there already exist many excellent books reviewing the
field. Some, such as Herman (1980), review the subject from the
viewpoint of the theoretically minded physicist or engineer, whereas
others, for example Natterer (1986), are really only accessible to persons
who first and foremost regard themselves as mathematicians. Optionally,
for a practical discussion, the book by Barrett and Swindell (1981) may
be consulted. Against the backcloth of this formidable weight of
literature, the purpose of this chapter is to provide a simplified view of
theory applicable to the most elementary scanning geometry in order to
come to grips with some basic principles. From this beginning, it should
be possible to go on to view the analogous developments in single-
photon emission computed tomography (Chapter 6) as well as recon-
struction techniques using ultrasound (Chapter 7) and nuclear magnetic
resonance (Chapter 8). The serious research student will find the
treatment in this chapter over-simple and could do no better than
branch out starting with one of the above books.

The theory of reconstruction from projections pre-dates the construc-
tion of any practical scanner for computed tomography. It is generally
accepted that the problem was first analysed by Radon (1917) some 70
years or so ago. The theory has been ‘rediscovered’ in several distinct
fields of physics including radioastronomy (Bracewell and Riddle 1967)
and electron microscopy (Gilbert 1972). An account of a method and
the first system for reconstructing x-ray medical images probably origin-
ated from Russia (Tetel’baum 1956, 1957, Korenblyum et al 1958) (see
Chapter 1), although it is the work of Hounsfield (1973) that led to the
first commercially developed system. This was a head scanner marketed
by EMI. Many different techniques for solving the reconstruction
problem have been devised and, in turn, each of these has received a
great deal of attention regarding subtle but important additional features
that improve image quality. It would be true to say that, just as scanner
hardware has developed rapidly, so parallel developments in reconstruc-
tion theory have kept pace to service new designs and to predict optimal
scanning conditions and the design criteria for new scanners.

Reconstruction techniques can be largely classified into two distinct
groups, namely the convolution and backprojection methods (or equiva-
lent Fourier techniques) and iterative methods. For a long time, there
was much debate as to the relative superiority of one algorithm or
another, and, in particular, whether one of the two classes was in some
way superior. Today, this debate has largely subsided, with the inevit-
able conclusion that each method has its advantages, it being important
to tailor the reconstruction technique to the scanner design and (in a
wider context) to the physics of the imaging modality. For example,
iterative techniques have found some important apphcatlons in emission
ct where photon statistics are poorer.

Next we derive the algorithm that is most commonly used in cr
scanners. It is the method of ‘filtered backprojection’ or ‘convolution
and backprojection’. A formal statement of the two-dimensional inverse
polar Fourier transform yielding y[x, y] is given by
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uP(r, 0) = plx, y]

= foﬂ | M2, ¢) explomip(xcos ¢ + ysing)]lo| do dp  (4.11)

where x(= rcos 6) and y(= rsin 8) denote the general object point.

If equation (4.11) is broken into two parts, the method of solution
becomes immediately apparent (indeed, these two equations give the
method its name):

ulx, y] = [[ K(x) do

(4.12)

x'=xcos p+y sin¢p

where

Np(x') = fw MP(p, ¢)|plexp(2mipx’) dp. (4.13)

Consider equation (4.13), which defines an intermediate quantity A'.
For reasons that will become obvious, A" is called the filtered projection.
The first point to notice is that equation (4.13) is the one-dimensional
Fourier transform of the product of MP and |p|. As such, it should also
be possible to write it as the convolution of the Fourier transforms of
Mpr and |p| (see the appendix of Chapter 12, §12.9.2). Taking MP first,
its transform is known from the central slice theorem. It is just the
projection data, A4(x’), i.e.

Ag(x') = f_: Ay(8') exp(2mil’x") AT’ (4.14)
where, from (4.9),

Ay(E) = MP(p, ¢).

Now consider |p|. This is not a sufficiently well behaved function for its
transform to exist. In practice, however, we have seen in §4.2.3 that
M(p, ¢) is band-limited by the measuring system, so if the maximum
frequency component of M(p, @) is Pma then |p| can be similarly
truncated. Thus we need the transform p(x’) of P(p), where

P(p) =0 ol = Pmax

P(p) = |p| 1Pl < Pmax (4.15)

i.e.

"Omax 0
p(x') = L p exp(2mipx’) dp — f_p p exp(2mipx’) dp.  (4.16)

Equation (4.16) is straightforward to evaluate (see appendix, §4.6), with
the result

p(x") = plal2sinc(2pmaxx’) — sinc?(Pmaxx’)] 4.17)

which is perfectly well behaved.
Using the convolution theorem, equation (4.13) can now be written as

My(x') = f_m/l,,,(x)p(x’ - x)dx (4.18)
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or in the conventional shorthand notation (* denoting convolution)

Mp(x") = Ao(x")*p(x"). (4.19)
The dagger (f) indicates a filtered projection because the original
projection is convolved with p(x’'), which constitutes a filtering opera-
tion.

Now we look at equation (4.12). This represents the process of
backprojection in which a given filtered projection 1% is distributed over
the [x, y] space. For any point x, y and projection angle ¢, there is a
value for x' given by

x' = xcos¢ + ysin¢.

This is the equation of a straight line (parallel to the y’ axis), so the
resulting distribution has no variation along the y’ direction. A simple
analogy is. to think of dragging a rake, with a tooth profile given by
Als(x'), though gravel in the y’ direction. The one-dimensional tooth
profile is transferred to the two-dimensional bed of gravel. Backprojec-
tion is not the inverse of projection. If it were, the reconstruction-from-
projection problem would be trivial! It is very important to be clear that
pure backprojection of unfiltered projections will not suffice as a
reconstruction technique. Equation (4.12) also contains an integration
over ¢, which represents the summation of the backprojections of each
filtered projection, each along its own particular direction. It is like
raking the gravel from each projection direction with a different tooth
profile for each filtered projection. The analogy breaks down, however,
since each raking operation would destroy the previous distribution
rather than adding to it, as required by the integration process.

The total solution is now expressed by equation (4.19) and equation
(4.12). In words, each projection A4(x") is convolved (filtered) with
p(x’) (equation (4.17)). The filtered projections are each backprojected
into [x, y] and the individual backprojections (for each projection angle)
are summed to create the image y[x, y].

4.3.1 A practical implementation

In practice, the data are discretely sampled values of A4(x’). Thus the
continuous convolution of equation (4.18) must be replaced by a
discrete summation, as must also the angular integration of equation
(4.12). We deal first with the convolution. The Whittaker—Shannon
sampling theorem states that a band-limited function with maximum
frequency component pp., can be completely represented by, and
reconstructed from, a set of uniform samples spaced s apart, where
§ < (2pmax) ~!. This requirement corresponds to adjacent samples being
taken approximately w/2 apart, where w is the width of a detector.
Provided that the data are band-limited in this manner, the continuous
convolution can be replaced by a discrete convolution. Grossly mislead-
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ing results can occur if the sampling is too wide to satisfy this Nyquist
condition.
From equation (4.17) and using s = (2pmax) ", it is seen that

p(ms) =0 meven, m ¥ 0
p(ms) = —(ams)~2  m odd (4.20)
p(ms) = (25s)72 m=0

where ms denotes the positions along x’ at which the discrete filter is
defined. The projection data A, are sampled at the same intervals, so
that equation (4.18) can be replaced by its discrete counterpart

1 1S Ag((m = n)s)
Aly(ms) = — Ay(ms) — — —_—
¢( ) 4s ¢( ) Trzs (min)odd ‘ (m —_ n)2
where m and n are integers. Figure 4.14 shows the continuous and

sampled versions of p(x’).

(4.21)

1.0
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o

plx')inp
(=]
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>

20max X'
Figure 4.14 The full curve shows continuous form of the
Ramachandran-Lakshminarayanan filter. The open circles show the
points at which the filter is sampled for digital filtering methods.
(Reproduced from Barrett and Swindell (1981).)

Equation (4.21) is the result obtained in a quite different way in the
classic paper by Ramachandran and Lakshminarayanan (1971) and is the
discrete version of the result obtained by Bracewell and Riddle (1967).
Note that, although the Fourier transform has featured in its derivation,
the reconstruction technique is entirely a real-space operation. The
convolution function (the transform of the bounded |p|) is the same for
all the projections and can therefore be computed, stored and re-used
for each projection. Equations (4.12) and (4.21) show that the contribu-
tions to the reconstruction u[x, y] can be computed from the projections
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one by one, as they arrive from the scanner, and once ‘used’ the
projection may be discarded from computer memory. This is a distinct
advantage over the two-dimensional Fourier transform method (§4.2.5)
of recovering u[x, y], when all the transformed projections are in use
simultaneously. One can even view the reconstruction ‘taking shape’ as
the number of contributing projections increases.

The discrete backprojection is shown in figure 4.15. It is necessary to
assign and then sum to each element in the image array u; the
appropriate value of A%. This can be done on a nearest-neighbour basis,
but it is better to interpolate between the two nearest sampled values of
A'y. Formally, the process is described by

b= 3 K (ms) (4.22)

where subscript n denotes the nth projection and m* denotes an
interpolated point within m for which the -interpolated value of A" is
calculated. The backprojection through m* passes through the centre of
the ith pixel.

Image matrix

Ll (]

Figure 4.15 The object is reconstructed into an array of pixels u,,
M2, ... by backprojecting each filtered projection onto the array
and summing the results for each projection angle.

The total process is not so daunting as it seems. For parallel
projection data, the whole process can be coded into less than 25 lines
of FORTRAN code (see figure 4.16).
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DIMENSION P(65),PSTAR(65),F(4225)
DATA W/.3333333/, M/50/, F/4225*0./
C FOLLOHING STEPS ARE DONE FOR EACH PROJECTION

50 K=1,M
C READ ons SET ROJECTION DATA AND ANGLE
READ (1,100) P,PHI
100 FORMAT (66F6.2)
{ SINE = SIN(PHI)
. COSINE = COS(PHI)
C CALCULATE FILTERED PROJECTION PSTAR
3 5

Q = P(I)*2.467401

JC = 1 + MOD(I,2)

D0 20 J=JC,65,2
20 Q = Q - P(3)/(I-0)**2
30 PSTAR(I) = Q/(3.141593*M*W)
C BACK PROJECT FILTERED PROJECTION ONTO IMAGE ARRAY

D0 50 J=1,

IMIN = J"65 32- INT(SQRT(1024 -(33-J)**2)

IMAX = (2*J-1)*65 - IMIN +

X = 33 + {33-J)*SINE + (IMIN-J"GS#31)'COSINE

DO 50 I=IMIN,IMAX

X=X+ COSINE

IX = X
50 F(I) = F(I) + PSTAR(IX) + (X-IX)*(PSTAR(IX+1)-PSTAR(IX})
C DENSITY VALUES ARE NOW STORED IN F ARRAY READY FOR PRINTOUT
STOP

END
Figure 4.16 Despite the apparent complexity, the reconstruction
process of filtering the projections and backprojecting into the image
array can be coded into just a few lines of ForTRAN. This code is
for parallel-beam reconstruction. (After Brooks and Di Chiro
(1975).)

Returning briefly to the filtering operation, it is sometimes advan-
tageous to reduce the emphasis given to the higher-frequency compo-
nents in the image for the purpose of reducing the effects of noise. One
widely used filter due to Shepp and Logan (1974) replaces |p| with

|2Pmax/m) sin(7p/2pmax)|
(see figure 4.17). The digital filter has the form

p(ms) = — 2(ms)~2(4m? — 1)~} m=0, 1, £2,.... (4.23)
1.0
ER A N
Q
{1 1 1 11

3210 1 2 3
Py X'

Figure 4.17 The continuous and discrete versions (full curve and
open circles, respectively) of the Shepp and Logan filter. (Repro-
duced from Barrett and Swindell (1981).)
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Another widely used filter, the Hanning window, uses an apodising
factor A(p) given by

A(p) = a + (1 — a) cos(Tp/Pmax)

which multiplies into |p|. The quantity a is a variable parameter that
gives A(0) =1 for all & and A(Pmax) = 2a — 1 varying from —1 for
a = 0to 1 for & = 1. In practical terms, when A(p) is included on the
RHS of equation (4.13), this becomes equivalent to convolving the
projection data A4(x’) with a modified kernel p(x’) whose form is
different from that in equation (4.17) (or discretely, equation (4.20)). A
fuller discussion of windowing is given in the section on single-photon
emission computed tomography (§6.7).

In this section, the filtered backprojection method has been described.
Since both the filtering and the backprojection are linear and shift-
invariant operations, it does not matter which is performed first. When
backprojection is performed first, however, the filtering becomes a
two-dimensional operation. Backprojecting unfiltered projections would
yield a result up[x, y], where

pnl, ¥ = [ AN dg | (4.29)
Rewriting equation (4.14) for the central slice theorem, we have
o0 Mp X . ,
Ao(x) = f_w (%@) |l exp(2mipx’) dp. (4.25)

Comparing the pairs of equations (4.24) and (4.25) with (4.12) and
(4.13), it is quite clear that ug[x, y] is related to u[x, y] by a function
that compensates for the denominator in the integral (4.25). Deconvolu-
tion of this function from ug[x, y] to yield u[x, y] is possible, but is a
very clumsy way of tackling the reconstruction problem. If it is also
remembered that filtering can take place in real space (by convolution)
or Fourier space, it is clear that there are many equivalent ways of
actually performing the reconstruction process (Barrett and Swindell
1981).

After the first generation of transmission CT scanners, the technique
of rotate-translate scanning was largely abandoned in favour of faster
scanning techniques involving fan-beam geometry. Viewed at the primi-
tive level, however, these scanning geometries merely in-fill Fourier
space in different ways and a reconstruction of some kind will always
result. Indeed, it is perfectly possible to imagine merging projection data
for the same object taken in quite different geometries. Once this is
realised, it is soon apparent that the multitude of reconstruction
methods that exist are in a sense mere conveniences for coping with
less-simple geometry. The methods do, however, possess some elegance
and many of the derivations are quite tricky! Without wishing to be
overdismissive of a very important practical subject, we shall make no
further mention of the mathematics of more complex geometries for
reconstructing two-dimensional tomograms from one-dimensional
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projections. Similar reconstruction techniques have been used for x-ray
transmission cone-beam tomography, whereby the x-rays are collimated
to a cone and impinge on an area detector (see e.g. Feldkamp et al
1984, Webb et al 1987). There are also other quite ingenious methods
for obtaining transmission tomograms that rely on very different
mathematics: for example, circular tomography (Smith and Kruger
1987), whereby every point within the patient is projected onto a circle
on the face of an image intensifier by the circular motion of the focal
spot of a custom-designed x-ray tube. Selected planes are brought into
focus by optically tracking an annular viewing field across the image
intensifier with the diameter of the annulus defining the plane of
interest. Circular tomography is somewhat intermediate between classi-
cal tomography, which requires no reconstruction mathematics, and
x-ray CT, since circular tomography demands that the recorded data be
decoded before they are able to be interpreted.

4.4 ITERATIVE METHODS OF RECONSTRUCTION

In the early days of computed tomography, iterative methods were
popular. Various techniques with names such as ART (algebraic recon-
struction technique), SIRT (simultaneous iterative reconstruction techni-
que) and 1Lst (iterative reconstruction technique) were proposed and
implemented. Such methods are no longer used for x-ray cT but still
find application where the data sets are very noisy or incomplete, as
they often are in emission computed tomography (see Chapter 6).

The principle of the method is described in figure 4.18. The image
(the estimate of the object) is composed of I two-dimensional square
pixels with densities u;, 1 < i < I. The projections A(¢, x') that would
occur if this were the real object are readily calculated using

1

Mo, %) = 2 (@, x ) (4.26)

where a(¢, x’) is the average path length traversed by the (¢, x’)
projections through the ith cell. These coefficients need only be
calculated once; they can then be stored for future use. For a typical
data set, equation (4. 26) represents 10° simultaneous equations. The
solution method is to adjust the values of the u; iteratively until the
computed projections A most closely resemble the measured projections
A. These final values yu; are then taken to be the solution, i.e. the image.
Equation (4.26) is not soluble using direct matrix inversion for a variety
of reasons that relate not only to the size (a is typically a 105 X 103
square matrix, albeit a very sparse one) but also to the conditioning of
the data.

Because of measurement noise, and the approximations engendered
by the model, there will not be a single exact solution. The arguments
are very similar to those in Chapter 12 explaining why image deconvolu-
tion is difficult. Furthermore, there are usually far more equations than
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there are unknowns, so a multiplicity of solutions may exist. Part of the
difficulty of implementing the solution is in deciding upon the correct
criteria for testing the convergence of the intermediate steps and
knowing when to stop. This is but one example of a whole class of
ill-posed problems, which in recent years has necessitated the develop-
ment of a new branch of mathematics bearing this same name.

Image matrix
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Figure 4.18 In iterative reconstruction methods, a matrix of I cells
represents the object. The line integrals for the projection data are
then replaced by a set of linear equations (4.26). (Reproduced from
Barrett and Swindell 1981)

The many iterative algorithms differ in the manner in which the
corrections are calculated and reapplied during each iteration. They may
be applied additively or multiplicatively; they may be applied im-
mediately after being calculated; optionally, they may be stored and
applied only at the end of each round of iteration. The order in which
the projection data are taken into consideration may differ as well.

The simple example shown in figure 4.19 illustrates additive immedi-
ate correction. Four three-point projections are taken through a nine-
point object O, giving rise to projection data sets P; through P,. Taken
in order, these are used successively to calculate estimates E; through
E, of the original object.

The initial estimate is obtained by allocating, with equal likelihood,
the projection data P, into the rows of E;. Subsequent corrections are
made by calculating the difference between the projection of the
previous estimate and the true projection data and equally distributing
the difference over the elements in the appropriate row of the new
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estimate. For example, the difference between the projection of the first
column of E; shown in parentheses (15), and the true measured value
(16) is 1. In creating the first column of E,, one-third of this difference
(3) is added to each element of the first column of E;. The first
iteration is completed with the calculation of E4. That the process
converges in this numerical example is demonstrated by calculating the
root-mean-square (RMs) deviation of elements of E; through E, from
the true values in O. As the figure shows, these RMs errors decrease
monotonically. )

Further discussion of iterative algorithms is detailed in the book by
Herman (1980) and the review article by Webb (1981).

P, \Q»S Py
B8

1,213
Object 0 8[9[u] —>nip
7]6|s| —8
B R N
* N
16 11 1 / &3’,2
E P, £, P
s»l2121(2 RS error=14 24|24 1 /
Pf[“”? 117 73|75] 6
B¢l 66 RMserror=1.2 |65 |65 | 5
{15) (15} 115) 16 17 12
P
Eg EI.
2 2§- Z%Mermr:OJ 1-95- 2 2%
7519 |45 8 (83| &
73 513 5 Rmser|-or=0.57j§‘r 6 1.3
A - N\ x
Wl N\ X o
.e\\“/ W \\be
s %Y v

Figure 4.19 A simple example of iterative reconstruction. See text
for explanation.

1

4.5 OTHER CONSIDERATIONS

4.5.1 Angular-sampling requirements

Assuming a point-like source of x-rays, the effect of having a rectangu-
lar detector profile of width w in the direction of the projection is to
modulate the spectrum of the projection with a sin(mpw)/mpw apodisa-
tion. The first zero of this function is at p = 1/w. If we equate this to
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the maximum frequency component, i.e. Py, = 1/w, then the sampling
interval s along the projection must be s < w/2, as required by the
sampling theorem (see also §12.6). Frequencies higher than pp,, will, of
course, persist in the sidelobes of the apodising function but at greatly
reduced amplitudes, so the sampling requirement is only approximately
fulfilled. Additional high-frequency attenuation will take place, howev-
er, owing to the finite source size (and possibly patient motion), and this
w /2 criterion is found to be an acceptable compromise between generat-
ing aliasing artefacts and processing massive amounts of data. The
question regarding the number N4 of angular samples remains. The
number N, is taken to be the number of projections in the range
0= ¢ < 180°.

If the final image is to have equal resolution in all directions, then the
highest spatial-frequency components must be equally sampled in the
radial and azimuthal directions in the neighbourhood of p = ppa in the
(p, @) Fourier space.

For an object space of diameter D and projection data that are
sampled with an interval d, the number of samples per projection is
Ny=D/d and the radial sampling interval in Fourier space is thus
2pmaxd/D. The azimuthal interval at p = ppay is PmaxA¢, where
A¢ = w/N,4. Equating these sampling intervals yields the result

Ny = (7/2)N,. (4.27)

In practice, projections are usually taken over 360° to reduce partial-
volume and other artefacts, so 2N, projections are usually taken.
Equivalently, the angular increment in projection angle is

A¢ = 2/N, (4.28)
for a uniformly sampled image data set.

4.5.2 Dose considerations

The projection data are subject to measurement noise. If a particular
measurement were repeated many times, yielding an average measured
value of n detected x-ray photons, then the random noise associated
with a single reading will be Vn. These fluctuations result from the
Poisson statistics of the photon beam, and cannot be eliminated. These
measurement fluctuations propagate through the reconstruction algo-
rithms, with the result that a perfectly uniform object of density u will
appear to have a mottled appearance. A signal-to-noise ratio (SNR) can
be defined as

SNR = u/Ap (4.29)

where Ap is the RMs fluctuation in the reconstructed value of u about its
mean value.

On the assumption that this photon noise is the only source of noise
in the image, several authors (see for example Barrett et al 1976) have
determined an expression relating the x-ray dose U delivered to the
centre of a cylindrical object to the spatial resolution & and the
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signal-to-noise ratio sNR. The expression has the form
nU= ki(sNrR)?/e*b (4.30)

where b is the thickness of the slice, n is the detective quantum
efficiency of the detector, and k; is a constant that depends on beam
energy, the diameter of the object and the precise manner in which & is
defined. The points to note are that the dose depends on the second
power of the signal-to-noise ratio and, to all intents and purposes, on
the inverse fourth power of the resolution. This latter claim is made
because in any reasonable system the slice width will be scaled in
proportion to the resolution required: thickness b = ke where k, is
typically 2-5, i.e. the reconstruction voxel is a rather skinny, rectangu-
lar, parallelepiped. If k, becomes too large, partial-volume effects, as
described in the next section, will become obtrusive.

Figure 4.20 shows how the quantities are related for a typical beam
energy and object size. It is seen that dose levels in the range of 0.01 to
0.1 Gy are delivered to produce images with millimetre resolution at
approximately 1% density discrimination. These are the dose levels that
are actually found in practice, and one therefore presumes that commer-
cial cr scanners are operating at, or close to, this photon-limited
situation. The 16-fold increase in dose that would be needed for even a
modest two-fold increase in resolution would seem to negate the
possibility of improving the spatial resolution. Fortuitously, submil-
limetre resolution of bony structures can be obtained without invoking
these unacceptably high dose levels. This is because the bone /tissue
interface has a density ratio of almost 2:1 and the sNR can be traded off
to improve the spatial resolution without escalating the dose. Of course,
it requires finer sampling of the projection data. A new research tool
has recently been announced—Superscope (Flannery et al 1987a,b) to
perform tomographic microscopy with a resolution 1000 times that of
medical x-ray cT. In view of the dose-resolution constraint expressed by
equation (4.30), the enormous intensity of the Brookhaven National
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Figure 4.20 Nomogram relating dose U, density discrimination
(sNR) and resolution ¢ for a typical diagnostic cT scanner.
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Laboratory synchrotron source was harnessed. The instrument has been
used to visualise the internal structure of insects.

4.5.3 Partial-volume artefacts

Because the x-ray beam diverges in a direction perpendicular to the
slice, a projection measured in one direction may be slightly different
from the projection taken along the same path but in the opposite
direction. This provides one reason for requiring a full 360° scan of the
patient. The inconsistencies in the data can be compensated by combin-
ing data from opposite directions.

A different but related partial-volume effect arises from the observa-
tion that the anatomical structures do not in general intersect the section
at right angles. A long, thin voxel could well have one end in soft tissue
and the other end in bone. As a result the reconstructed ¢ would have
an intermediate value that did not correspond to any real tissue at all.
This is the main reason for scaling d with £ and not letting k, get too
large (see previous section).

4.5.4 Beam-hardening artefacts

As the x-ray beam passes through tissue, the lower-energy components
are attenuated more rapidly than the higher-energy components. The
average photon energy increases; the beam becomes harder. As a result,
the exponential law of attenuation no longer holds.

With no absorber in the beam, the detector output is

Emﬂx
Io=ks [ S(E) dE (4.31)

where the source spectrum S(E) is defined such that S(E)dE is the
energy fluence in the energy range E to E + dE.

With an object in the beam, Beer’s law must be weighted by the
energy spectrum and integrated, to give

I1=k; fo ™ S(E) exp(— fABuE[x, y] dy’) dE (4.32)

and the projection A is thus

J§m= S(E) exp(— Jasuelx, y] dy’) dE)
[¢™S(E)dE '
It is this non-linear relationship between A and p that causes the
problem. The principal effects of this artefact show up as a false
reduction in density in the centre of a uniform object and the creation
of false detail in the neighbourhood of bone/soft tissue interfaces. These
artefacts are particularly troublesome in the skull. There are several
ways that the problems can be overcome, and at this point the reader is
referred to the appropriate literature.
We thus complete our, albeit brief, presentation of the important
concepts of x-ray cr. The reconstruction theory itself has a certain

P ln( (4.33)
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elegant simplicity using simple assumptions concerning the physics.of the
data assembly. We have seen how imaging hardware is constructed to
realise the theory and how in a relatively brief timespan this equipment
has been optimised. In the next chapter we shall complement this
discussion by describing how, in addition to its role as a diagnostic
device, the cr scanner has found a fundamental place in aiding the
planning of radiotherapy treatment.

4.6 APPENDIX

4.6.1 Evaluation of the Fourier transform p(x') of the band-limited
function |p|

We start from equation (4.16), which is integrated as follows:
'Pmax 0
p') = | pexperipx’y dp - | pexp(aripx’) do

: [p exp(2mipx’)

Pumax J' Prax exp(2mipx') dp’
2mix’

0 0 27mix’

0 + j % exp(2wipx’)dp’

B [peXP(Zﬂipx’)
Pmax 27Tix !

2mix’

~Pmax

_ PraxSINCTPmax’) [exp(Zﬂipx’)

s [exp(Znipx’) 0

ax’ (2mix")? o Q2aix")?  l-puu
coS(2mPmaxx’) — 1
= 202 SINC(2Pmaxx’) + 7Pmar¥’)
2m2x'?

= 207 SINC2PmaxX") — Prax SINCH(Pmaxx ).

We thus obtain the result given by equation (4.17), i.e.
P(x') = Pra[28INC(2Pmaxx”) — SINC?(Pmaxx)]-
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