Prof. Sara Pozzi
Dr. Marek Flaska
Dr. Shaun Clarke
Dr. Syed Naeem
Alexis Poitrasson-Rivière (GSI)
Kyle Polack (GSI)
http://www-ners.engin.umich.edu/labs/dnng/

Requirements:
- Personal laptop (can be shared if needed); MCNP5/MCNPX and MCNPX-PoliMi RSICC licenses (please request them ASAP at http://www-rsicc.ornl.gov/); MATLAB access
- Class attendance is mandatory

Textbooks and study materials:
3. MCNP5/MCNPX and MCNPX-PoliMi manuals
4. Course handouts and notes

Grading:
60% laboratory reports
20% laboratory presentation
20% final exam (17-Dec-12, 16.00)

All laboratory reports are due at the start of class on the specified due date. Late reports will be penalized 10% for every day past the deadline.

NOTE: Lab reports are limited to 10 pages. Any content past page ten will not be read.

Honor Code:
Laboratory experimental work is collaborative. However, all data analysis and report writing is to be done individually. The laboratory presentation will be a collaborative assignment. The final exam will be completed individually.

Office Hours (GSIs):
Times: Tuesday, Thursday 1:00 – 2:00 p.m.
Room: ERBII 1213
E-mails: alexispr@umich.edu
 kpolack@umich.edu

Format:
Weekly lectures, 2 hours per week on Mondays.
5 laboratories (4 measurement labs and 1 simulation lab). Laboratory meets during scheduled class period on Wednesdays.
Syllabus (Lectures are shown in bold)

Week 1
Nuclear nonproliferation; homeland security
Introduction to the physics of nuclear fission (Knoll Ch. 1)
- Spontaneous/neutron induced fission
- Fission chain multiplication, Rossi alpha
- Neutron and gamma-ray sources (PANDA Ch. 11)
- Neutron and gamma-ray multiplicities
- Delayed neutrons and gamma rays
- Special nuclear material (plutonium and uranium)

Weeks 2-3
Introduction to Monte Carlo simulations for nuclear nonproliferation applications
MCNP5/MCNPX, MCNP-PoliMi (*MCNP5 manual Vol. 1 Ch. 1*)
Passive detection of nuclear materials
- Neutron measurement techniques
- Gamma-ray measurement techniques

Laboratory 1: Introduction to Monte Carlo Simulation Techniques (3 weeks), due 10 October
1.1: Gamma Spectroscopy with MCNPX
1.2: Gamma Spectroscopy with GEANT4
1.3: Gamma Spectroscopy Validation Measurement

Weeks 4-11
Detectors and safeguards instruments (PANDA Ch. 14)
- He-3 detectors, gamma-ray detectors (Knoll Ch. 14.III.B.6 and Ch. 12, PANDA Ch. 17)
- Liquid and plastic organic scintillation detectors – fast-neutron scattering (Knoll Ch. 8.1.A, 8.1.B and 15.III)
- Boron-loaded and lithium-glass scintillators – neutron collisions and capture mechanism (Knoll Ch. 14.II.F and 15.II.A.2)
- Pulse-shape discrimination between neutrons and gamma rays (Knoll Ch. 8.1.C, and 15.III.B.6)
- Cross-correlation and bi-correlation measurement techniques

Laboratory 2: Gamma-Ray Enrichment Measurements (2 weeks), due 24 October
2.1: Uranium Enrichment Measurement
2.2: Enrichment Measurement Analysis using MCNPX (or GEANT4)

Laboratory 3: Organic Liquid Scintillator Measurements (2 weeks), due 14 November
3.1: Simulation of Neutron Pulse Height Distributions from Liquid Scintillators with MCNPX-PoliMi (or GEANT4)
3.2: Liquid Scintillator (EJ-309) Calibration and PSD Development
3.3: Measurement of Mixed Neutron/Gamma-ray Pulses using a Liquid Scintillator

Laboratory 4: Time-of-Flight Spectroscopy (3 weeks), due 28 November
4.1: Time-of-Flight Simulations with MCNPX-PoliMi (or GEANT4)
4.2: Time-of-Flight and Cross-Correlation Measurements with 252Cf
4.3: Time-of-Flight Characterization of a D-D Source
Weeks 12-13
Active interrogation nuclear materials
- Active interrogation with neutron sources
- Active interrogation with photon sources
- Photonuclear physics overview

Laboratory 5: Active Interrogation with a Bremsstrahlung Source (2 weeks), due 11 December
 5.1: Simulation of bremsstrahlung photon sources
 5.2: Simulation of active photon interrogation of HEU

Week 13
Presentations and final exam preparation
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Wed, 05-Sep-2012</td>
<td>Course Introduction and Intro to MC + Dice Example</td>
</tr>
<tr>
<td>1</td>
<td>Mon, 10-Sep-2012</td>
<td>Radiation Safety Training</td>
</tr>
<tr>
<td></td>
<td>Wed, 12-Sep-2012</td>
<td>Lab 1.1 - Introduction to MCNP</td>
</tr>
<tr>
<td>2</td>
<td>Mon, 17-Sep-2012</td>
<td>Random Walk/GEANT4</td>
</tr>
<tr>
<td></td>
<td>Wed, 19-Sep-2012</td>
<td>Lab 1.2 - Introduction to GEANT4</td>
</tr>
<tr>
<td>3</td>
<td>Mon, 24-Sep-2012</td>
<td>DNNG Measurement System Intro</td>
</tr>
<tr>
<td></td>
<td>Wed, 26-Sep-2012</td>
<td>Lab 1.3 - Validation Measurement (NaI)</td>
</tr>
<tr>
<td>4</td>
<td>Mon, 01-Oct-2012</td>
<td>Sources, Materials, and Gamma-Spec Enrichment Measurement</td>
</tr>
<tr>
<td></td>
<td>Wed, 03-Oct-2012</td>
<td>Lab 2.1 - Enrichment Measurement (HPGe)</td>
</tr>
<tr>
<td>5</td>
<td>Mon, 08-Oct-2012</td>
<td>Neutron PHDs and MCNPX-PoliMi Intro</td>
</tr>
<tr>
<td></td>
<td>Wed, 10-Oct-2012</td>
<td>Lab 2.2 - Enrichment Measurement Analysis using MCNPX</td>
</tr>
<tr>
<td>6</td>
<td>Mon, 15-Oct-2012</td>
<td>Fall Break</td>
</tr>
<tr>
<td></td>
<td>Wed, 17-Oct-2012</td>
<td>Lab 3.1 - Neutron Pulse Height Distribution Simulation</td>
</tr>
<tr>
<td>7</td>
<td>Mon, 22-Oct-2012</td>
<td>Organic Scintillators and PSD</td>
</tr>
<tr>
<td></td>
<td>Wed, 24-Oct-2012</td>
<td>Lab 3.2 - Liquid Scintillator (EJ309) Calibration and Pulse Shape Discrimination</td>
</tr>
<tr>
<td>8</td>
<td>Mon, 29-Oct-2012</td>
<td>Organic Scintillators and PSD</td>
</tr>
<tr>
<td></td>
<td>Wed, 31-Oct-2012</td>
<td>Lab 3.3 - EJ309 PSD/PHD Measurements</td>
</tr>
<tr>
<td>9</td>
<td>Mon, 05-Nov-2012</td>
<td>Time-of-Flight and Cross Correlations</td>
</tr>
<tr>
<td>10</td>
<td>Mon, 12-Nov-2012</td>
<td>Lab 4.2 - Time-of-Flight and Cross-Correlation Measurements</td>
</tr>
<tr>
<td></td>
<td>Wed, 14-Nov-2012</td>
<td>Lab 4.3 – D-D Source Time-of-Flight Characterization</td>
</tr>
<tr>
<td>11</td>
<td>Mon, 19-Nov-2012</td>
<td>Bremsstrahlung Sources, Lab 5.1 - Simulation of Bremsstrahlung Sources</td>
</tr>
<tr>
<td></td>
<td>Wed, 21-Nov-2012</td>
<td>No meeting - Thanksgiving</td>
</tr>
<tr>
<td>12</td>
<td>Mon, 26-Nov-2012</td>
<td>Active Photonuclear Interrogation</td>
</tr>
<tr>
<td></td>
<td>Wed, 28-Nov-2012</td>
<td>Lab 5.2 - Active Photonuclear Interrogation with MCNPX</td>
</tr>
<tr>
<td>13</td>
<td>Mon, 03-Dec-2012</td>
<td>Presentations</td>
</tr>
<tr>
<td></td>
<td>Wed, 05-Dec-2012</td>
<td>Presentations</td>
</tr>
<tr>
<td></td>
<td>Mon, 10-Dec-2012</td>
<td>Final Exam Preparation</td>
</tr>
<tr>
<td></td>
<td>17-Dec-12</td>
<td>Final Exam 4 pm</td>
</tr>
</tbody>
</table>