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Real-Time Power Management of Integrated Power Systems in All Electric
Ships Leveraging Multi Time Scale Property

Gayathri Seenumani, Jing Sun, and Huei Peng

Abstract—All-electric ships (AES), enabled by integrated power
systems (IPS), have been pursued for both commercial and military
applications to meet the increasing ship-board power demand and
environmental sustainability initiatives. They necessitate real-time
power management (PM) for dynamic reconfiguration to support
system critical operations in the event of dynamic load change or
IPS component failures. The nonlinear, large scale trajectory opti-
mization problem associated with IPS, along with the non-analyt-
ical nature of IPS model, makes many existing methods inadequate
in meeting the real-time requirements. In this paper, we develop
a methodology that exploits time scale separation, a characteristic
associated with IPS dynamics, to achieve real-time optimization. In
parallel, a dynamic model of the IPS with gas turbine and fuel cell
as power plants is developed that captures the relevant dynamics
but is simple enough for real-time optimization. The tradeoffs be-
tween the computational efficiency and optimization accuracy are
analyzed. The optimization results for IPS PM on a real-time sim-
ulator are reported, which illustrate the real-time feasibility of the
proposed optimization strategy.

Index Terms—All-electric ships (AES), integrated power systems
(IPS), optimal power management, multitime scale property, real-
time large scale optimization.

I. INTRODUCTION

T HE increasing power demand along with the mounting
pressure on energy conservation and environment protec-

tion has driven the initiative to pursue all-electric ships (AES)
[1] and have been pursued for both commercial and military ap-
plications. The integrated power systems (IPS) [2], [3] provides
a common electrical platform to combine propulsion and ship
service power system and hence enables the AES development.
Such an architecture facilitates the integration of heterogenous
power sources in order to achieve cleaner and more efficient
power generation. An IPS, whose schematic is shown in Fig. 1,
typically comprises of the following modules: power genera-
tion module (PGM), energy storage module (ESM), power con-
version module (PCM), electric propulsion module (EPM), and
ship service loads. For the IPS considered in this work, we con-
sider gas turbine/generator and fuel cell as the power sources
given their complementary efficiency and dynamic characteris-
tics [4]. The ship service loads are further categorized into vital
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(such as communications, life support operations) and nonvital
loads (such as space heating, entertainment).

In order to leverage the complementary characteristics of the
power sources, coordination between them is essential. How-
ever, the interconnected nature of the IPS presents challenges
in terms of managing individual components and their interac-
tions. In this paper, we consider the optimal power management
(PM) of the IPS targeting military applications. The control ob-
jective is to achieve optimal power split between the gas turbine
and fuel cell in terms of energy efficiency and power tracking
while ensuring component safety. The power management for
the AES has to deal with the following problem characteristics:

• long time horizons associated with the transient and steady
state missions;

• multiple power sources with complementary efficiency and
time response characteristics;

• difficulty in obtained closed form representation of IPS dy-
namics, in addition to the nonlinear nature;

• requirements to enforce of component safety constraints.
These features imply that the associated power management has
to solve a large scale, nonlinear and constrained optimization
problem. In addition, the On-demand nature of the problem for
the military applications makes real-time control a key require-
ment, thereby making the optimal PM challenging.

The problem under consideration has been treated as a trajec-
tory optimization problem for commercial hybrid land vehicles
where many different optimization based methods have been ex-
plored (see a detailed survey in [5]). These methods include dy-
namic programming (DP) [6], stochastic dynamic programming
(SDP) [7], and equivalent consumption minimization strategy
(ECMS) [8]. While the “curse of dimensionality” makes the DP
unsuitable for real-time execution, the lack of knowledge of a
transition probability function makes the SDP and ECMS in-
applicable for the control of IPS considered here. Sequential
quadratic programming (SQP) [9] is the most well known gra-
dient based method and has found wide applications in model
predictive control [10]. While much work has been done in im-
proving the efficiency of SQP [11] for large dimensional opti-
mization problem, the applicability is mainly restricted to sys-
tems where second order derivatives can be computed analyti-
cally.

In this paper, we propose an optimization methodology based
on the sensitivity function method [12], [13] for solving the
power management of IPS in real-time. The main idea used
to achieve real-time computational efficiency is to leverage the
multitime scale property of the IPS and solve a two-level simpli-
fied optimization problem, where the control solutions at each
level can be made available in real-time. Even though these so-
lutions are suboptimal, it is shown that the reduction in compu-
tational delay is outweighs the effects of optimization accuracy
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Fig. 1. Schematic of the IPS [3].

as illustrated in the later sections. First, we solve the optimiza-
tion problem on the time scale of the slowest dynamics (fuel
cell) and then seek transient corrections on the time scale in-
volving the faster system dynamics. The key contributions are
the realtime computational efficiency (namely, the control algo-
rithm can be implemented at the required sampling rate without
computational delay) of the proposed controller and the experi-
mental validation results.

This paper is organized as follows. In Section II, the PM
problem is formulated and the two time scale optimization al-
gorithm is proposed. The dynamic model of the IPS is summa-
rized in Section III. A case study of the IPS PM is developed in
Section IV and the online optimization results with and without
leveraging the multi time scale property are presented to illus-
trate the performance improvement of the proposed approach
due to the timeliness of the optimization solutions. Section V
concludes this paper with a discussion and summary of the main
results.

II. TRAJECTORY OPTIMIZATION METHODOLOGY FOR IPS
POWER MANAGEMENT

The optimization problem associated with the IPS power
management is formulated and the two time scale methodology
is proposed in this section. We consider a generic optimization
for the problem formulation in order to capture the different re-
quirements in the PM such as fast load-following, maximizing
fuel economy and voltage regulation. We explore the sensitivity
function method (SFM) [13], an iterative procedure, for solving
constrained optimization problems associated with IPS power
management. This method is chosen for the following two
reasons: 1) it provides a mechanism to leverage the multi-time
scale property of the IPS, for computational effort reduction
and 2) the second-order derivatives, which are difficult to obtain
due to the non-analytical nature of the IPS model, need not be
computed.

A. Optimization Problem Formulation

For the problem formulation, we only consider the dynamics
of the power sources (millisecond to second time constants),

since they are much slower than those of power converters
(microsecond time constants) and electric propulsion modules
(millisecond time constants). Note that even among the power
sources, the multi-time scale behavior can be observed, where
the faster subsystem (e.g., gas turbine) is less efficient than the
slower one (e.g., fuel cell). Therefore, in this work, we assume
that there are two generic power plants, the fast and the slow
ones and treat them as physically separated entities. We first
describe the power plants dynamics and constraints before
formulating the PM optimization problem.

Let , denote the states and control inputs of the fast
and slow sources. Let denote the fast and
slow power source dynamics. Then, the nonlinear IPS is de-
scribed by

(1)

where
and

We consider the following two types of constraints that the
control algorithm has to enforce.

1) Component constraints denoted by and
for the fast and slow subsystems. This

includes the physical limits and the input saturation limits
of the power sources.

2) Power generation constraints to ensure that
the generation exceeds certain threshold.

The power management objectives are captured using a
generic cost function which is given by

(2)

where is the terminal cost function,
is the instantaneous cost function, is the time window over
which the cost will be evaluated, are the instantaneous
values of the states and controls at time , respectively. We also
use the notation to denote the
control sequence over the window.
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The optimization problem is formulated as to find
, where

(3)

subject to constraints (1) and

(4)

where
.

In the remainder of the section, we summarize the SFM, de-
fine the iterative procedure for solving optimization problem de-
fined in , and quantify the computational effort associated
with the method. We then propose a two-level optimization so-
lution that exploits a specific structure of the SFM along with the
multi time scale property to further reduce the computational ef-
fort.

Consider the performance index in (2), whose first order ap-
proximation can be expressed as

(5)
where is any given control trajectory.

Let
and

, where
and . Then the sensitivity function defined as

can be expressed as

(6)

where , and are
defined as

(7)

with and evaluated at
, where is the state

trajectory sequence corresponding to the input . The
matrix will be referred to as the state sensitivity matrix in
the sense that .

Remark 2.1: Since the IPS model is nonlinear, in order to
compute the and matrices, the dynamics need to be lin-
earized. This is performed numerically given the non-closed
form representation of the IPS model (e.g., compressor and tur-
bine models are given as tables). For example, MATLAB offers a
function linmod to determine the linearized dynamics around a
given operating point.

The direction of search for the cost will either be in the
steepest descent [13] or in the feasible direction [14] to deal

with constraints. The feasible direction is defined as the steepest
descent direction that does not violate any constraints. Let
denote the active set defined as

For any given control sequence, if the active set is empty, the
search direction is . Otherwise, in the neighborhood
of a given control sequence, the feasible descent direction
will be the solution to a linear programming problem, defined
as follows:

(8)

subject to constraints

where minimizing leads to reducing the cost as well as the
constraint violation in the direction . Here are the
normalized gradient of the cost function and active constraint
set respectively and are defined as follows:

where for any vector is defined as
.

The control updates are then computed by performing a 1-D
search over the step size as follows:

s.t. (9)

where is chosen such that the updates are in the neighborhood
of the control sequence and constraints (3) are
satisfied.

Remark 2.2: The state sensitivity matrix is upper triangular
as the system is causal. In addition, for a stable system, the
matrix will be sparse and has a band diagonal structure, where
the number of band diagonal elements is defined as the index

such that . The faster the dy-
namics, the more sparse the matrix.

Remark 2.3: Even though the first order methods have been
used, leveraging the band diagonal structure reduces the com-
putations required to determine the sensitivity functions, hence
the control updates. This will especially be useful in solving op-
timization problems with extended horizon.

We now propose an iterative procedure for trajectory opti-
mization of systems:

Algorithm I (Sensitivity function method):

Given a feasible initial control trajectory , tolerance
,
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1: Simulate the dynamic model, determine the state
trajectories and compute the performance index

.
2: Compute the sensitivity matrices

and using (5), compute the sensitivity functions,
, with the band diagonal structure

of size . (See Remark 2.2).
3: Determine the active set . If the active set is empty,

set , otherwise compute by solving (8).
4: Compute optimal step size by solving (9)

and calculate the optimal update vector as
.

5: If , stop.
Otherwise update
and go to step (1).

In Algorithm I, we assume perfect state measurements are
available for the power plants considered in the shipboard IPS,
namely gas turbine and the fuel cell states, as is currently the
case with most power generation units.

Proposition 2.1: For a given number of states and control
inputs , the computational effort (flop count) required
per iteration of Algorithm I when and is

.
The key ideas used in deriving Proposition 2.1 are given in
Appendix A.

Corollary 2.1: Let denote the computational effort
(flop count) for sensitivity function generation when we
leverage band diagonal structure, i.e., we assume a sparse
structure for the matrix and set upper triangle elements as
zero, then, the ratio is of .

Proof: See Appendix B.
Remark 2.4: One possible way of choosing the initial con-

trol sequence is using the steady state optimal control
input, which is determined by solving as a static optimiza-
tion problem. However such a choice may not satisfy the con-
straints (4). Therefore, in this work, the initial control sequence
is chosen either as the unfiltered or the filtered steady-state op-
timal control, where the latter is used when the constraints are
violated.

Remark 2.5: The tolerance parameter used in the stop-
ping criteria for the Algorithm I is typically a small param-
eter [14] and it influences the optimization accuracy as well
as the computational effort. While the exact value depends on
the cost function , in this work this value is chosen such that

.

B. Proposed Two Time Scale Optimization

Since the complexity of Algorithm I is , we seek ways
to simplify the dimensions of the optimization problem as
this would yield considerable savings in the computational ef-
fort. To do so, we exploit the multitime scale property and con-
sider a two-level optimization approach, where the optimal so-
lutions at each level is the initial control sequence for subse-
quent optimization. The potential benefits of such an approach
is that the control solutions at each level can be made available

much earlier than the optimal control solutions com-
puted using Algorithm I. On the top-level, we simplify the op-
timization problem on the time scale of the slower power
source dynamics. Then, to account for under-sampling the fast
dynamics on the slow time scale, we seek transient corrections
on the time scale of the faster power source. It must be noted
that the proposed two time scale optimization in this paper deals
with multitime scale and decoupled subsystems.

Let and denote the time constant and the sam-
pling time for the fast and slow subsystems, respectively. If the
total time interval is and is an integer,1 we
now consider the following two optimization problems.

1) Level 1 Optimization : At this level, we solve the
problem on the time scale determined by the slower power
source. The problem is formulated to find the optimal control
sequence on the slow time scale given by

(10)

subject to constraints

(11)

(12)

where is the discrete time index on the slower time scale
and is the size of the time window on the
slower time scale. Then, level 1 solution is the control sequence

given by

(13)

(14)

Remark 2.6: Under the assumption that the dynamics of the
subsystem 1 are much faster than those of subsystem 2, we have

and make the following observations.
• In solving (10), the dynamics of the faster subsystem are

under-sampled at the rate designed for the slower time
scale. Hence the level 1 solution , are treated as sub-
optimal and expect that the true optimal solution
for all instants except around the transients.

• Since the SFM algorithm is , the optimization
problem defined by (10)–(12), is simpler than (3) and
(4). The effort can be reduced further if the band diagonal
structure is used.

2) Level 2 Optimization : This problem is formulated
on the fast time scale , to account for under-
sampling the faster dynamics on Level 1 and computes the cor-
rections , where is computed as

(15)
subject to constraints

(16)

(17)

1� � � can be chosen such that � is an integer and satisfy the Nyquist criteria,
i.e., � � �� ������ � � �� �����.
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(18)

where are the states associated with the control inputs
to the fast subsystems, with

computed using (13). Note that based on Remark 2.6, the ini-
tial control sequence for the level 2 optimization is chosen as

.
Remark 2.7: If SFM method is used to solve the optimization

defined in , since only the fast dynamics are considered the
sparsity of the matrix will be high, thereby making much
simpler to solve than (See Remark 2.2).

Algorithm II:

Given a feasible initial control trajectory (See
Remark 2.4), we propose the following algorithm to solve
the optimization problem defined by (3):

1) At , determine by solving the
optimization problem using SFM and compute
the sub-optimal control trajectories using
(13), (14).

2) Given and using as the initial
control sequence, compute by solving the

optimization problem using SFM.
3) If can be solved in real time: Compute

and as the sub-optimal
control inputs to the power plants.

4) Else: Compute and as the
sub-optimal as the sub-optimal control inputs to the
power plants.

Computational Efficiency Versus Optimization Accuracy:
Consider the following three possible solutions (there are more
than three solutions, we only consider three) to the IPS power
management problem, namely, as follows.

FS Full Scale (FS) control sequence obtained by solving
the optimization problem defined in (Algorithm I).

L1 Level 1 control sequence obtained by solving the
optimization problem defined in , i.e., step 1 of
Algorithm II.

L2 Level 2 control sequence obtained by solving the
optimization problem defined in , i.e., steps 1 and
2 of Algorithm II.

While the FS solutions have the best optimization accuracy, fol-
lowed by the and the steady-state solutions, this order
is reversed with respect to the computational effort required to
solve these problems. However, the ability to solve the optimiza-
tion problem in real-time without computational delay is an-
other key factor in deciding the performance (i.e., optimization
accuracy) associated with these approaches. Therefore the most
suitable algorithm is the one that can achieve a good tradeoff be-
tween the real-time computational efficiency and optimization
accuracy. In light of this, we attempt to quantify the reduction
in computational effort associated with computing the solutions
using L1 and L2 as compared to the full scale (FS) approach. We

TABLE I
GT MODELING NOMENCLATURE

rely on the assumption that sufficient difference in the dynamics
of fast and slow subsystems exist, the optimization accuracy of
the or can be comparable to the solutions, where the
benefits of the improved computational efficiency can achieve
better real-time performance. We now provide estimates of the
computational effort reduction in the following proposition.

Proposition 2.2: Let denote the flop count
per iteration using , and optimization respectively
and capture the multi time scale property. Under
the assumption , we have (a) and
(b) .

Proof: See Appendix C
The effectiveness of the proposed algorithm and the validity

of the estimates in effort reduction will be demonstrated on the
IPS optimization in Section IV.

III. OPTIMIZATION-ORIENTED IPS MODEL

In this section, we develop an control-oriented dynamic
model of the IPS in order to apply the algorithm proposed in
Section II. The IPS model consists of the component models,
namely, gas turbine and fuel cell whose dynamics are briefly
summarized below. More detailed model can be found in [15].

A. Gas Turbine

The gas turbine model captures the dynamic characteristics of
compressor, turbine, combustor and the coupling between tur-
bine and compressor. The combustor mass and temperature dy-
namics along with turbocharger rotational dynamics are consid-
ered, while the compressor and turbine air mass flows and effi-
ciencies and obtained by curve fitting the performance maps.
The variables and parameters used in GT model are defined in
Table I.

1) Compressor, Turbine: The compressor power is deter-
mined using first law of thermodynamics and is given by

(19)

where the compressor exit temperature is given as
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TABLE II
FC MODELING NOMENCLATURE

(20)

Similarly the turbine power is given by

(21)

where

(22)

2) Combustor: The burner mass is determined using the mass
balance and is given by

(23)

and the temperature is determined using energy balance as

(24)

The burner pressure is derived using ideal gas law
.

3) Turbocharger: The shaft speed is determined using the
power balance on the shaft given by

(25)

B. Fuel Cell and Reforming Unit

We consider a polymer electrolyte membrane (PEM) fuel cell
along with a fuel processing system (FPS). The
system [16] consists of a hydro desulphurizer (HDS), heat ex-
changer (HEX), mixer (MIX), fuel reformer (FR) that converts

the fuel flow to pure hydrogen, water gas shift reactor (WGS) for
gas clean up and fuel cell anode dynamics. A detailed 10 state
model of the FPS+FC system along with relevant assumptions
has been developed in [16]. In this work, we summarize a three
state reduced order model that captures the system dynamics as
well as operating constraints such as fuel starvation.

1) Hydro Desulphurizer: The HDS is represented as a large
volume and is simplified as a first order lag with a large time
constant ( 5 s) that reflects the slow dynamics of the lin-
earized model given in [16], the other two slow dynamics being
the FR temperature and the anode hydrogen partial pressure.

2) Fuel Reformer: The FR model is developed in [16] and
is summarized here. The temperature dynamics using energy
balance is given by

(26)

where is the inlet flow (fuel and air flow) and is the
outlet flow is the sum of the flows of the following species: CH ,
CO, CO , H , H O, N .

3) Anode: The anode partial pressure dynamic using mass
balance is given by

(27)

where is the hydrogen flow from the reformer,
are the anode outlet flow and reacted hydrogen as

given in [16]. The air supply is assumed to be instantaneous and
the cathode pressure follows the anode pressure. The readers are
referred to [16] for more information on the stack voltage model
and other details.

Remark 3.1: The control inputs to the HPS model are the
fuel flow to the gas turbine and fuel cell along with the battery
current. The total power produced by the HPS is the sum of the
power generated by the sources and battery.

C. IPS Efficiency and Time Response Characteristics

For the IPS model, we consider an arrangement of eight fuel
cell modules connected in series is considered to match the GT
turn-off ratio. Table III summarizes the ranges of power output,
fuel input, corresponding efficiencies and the spectrum of asso-
ciated linearized models of the gas turbine and fuel cell. From
Table III, it can be seen that FC is much more efficient than the
GT. In order to understand the multitime scale property between
GT and FC, given the nonlinearity of the IPS model, we con-
sider two measures: 1) The spectral analysis of the linearized
GT and FC models derived at different operating condition and
2) The settling time of normalized step response (from fuel to
power). It can be seen that even though there is 10 times separa-
tion between the fast eigenvalues of the gas turbine and fuel cell
respectively, there is an overlap in the spectrum. However, from
Fig. 2, it can be seen that the settling time of gas turbine (1.5
s) is about 5 times faster than the fuel cell (7 s) which indicates
separation in the scale of their time responses. It can be seen that
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Fig. 2. Normalized step response of fuel cell and gas turbine.

TABLE III
FC, GT PRINCIPAL CHARACTERISTICS

the fuel cell and gas turbine exhibits complementary character-
istics in terms of system efficiency and transient response.

IV. CASE STUDY

A case study is developed in order to solve the PM using the
IPS model developed in the previous section. The objectives of
the power management in this case study is to support the load
demands as quickly and as efficiently as possible, where the
loads are represented as time varying power demands. We con-
sider a hypothetical pulse power profile (see Fig. 3, black solid
line) associated with an aircraft or a weapon launch scenario.
The terminal and the instantaneous cost function (see Table IV)
captures the PM objectives, where the latter is the weighted sum
of power tracking error and total fuel consumption. The con-
straints along with the other optimization parameters are given
in Table IV. Here are the fueling rates to the gas tur-
bine and fuel cell and are the associated power out-
puts.

The main purpose of the case study is to illustrate the benefits
of the multitime scale approach by comparing the FS and
solutions in terms of the following aspects.

• Comparable optimization accuracy of the with respect
to the FS approach, when the optimization problems were
solved offline, which is due to the complementary dynamic
response characteristics of the power sources.

• Real-time computational efficiency of the optimization
as compared to the FS one, a direct consequence of which
is an improved real-time power tracking performance of
the optimization.

The implementation of the controller was done both offline and
in real-time where we used a Pentium processor for the offline
and a dual core OpalRT realtime target for online optimization
and the corresponding results are presented in Table V. The first
point to be noted is that the optimization accuracy of the
solutions is only about 3% lesser than the full-scale solutions,
when both the optimization problems were solved offline. How-
ever it can seen (Column 3) that the real-time accuracy of the
solution (4.6) is much better than the one (30.2) due to the
computational efficiency. While it takes 0.045 s to get
the control solutions of the optimization, the corresponding
FS problem takes 1.6 s to be solved, during which the
static optimal control input is applied to the power sources. This
leads to a performance deterioration of the FS solution in terms
of power tracking. The actual computational reduction from FS
to L1 optimization is 32 which is and is in line
with the estimation given by Proposition. 2.2.

Fig. 3 shows the real power tracking and the associated con-
trol trajectories, namely the fueling rates for the gas turbine and
fuel cell. The power output associated with the steady state
control is denoted by the green dashed line, while the power
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Fig. 3. Power and control trajectories: Demanded power �� �, real-time power tracking with static feed-forward optimal control � �� �, Level 1 optimal
control � �� � and true optimal control � using full-scale optimization �� �.

TABLE IV
IPS STATE AND OPTIMIZATION PARAMETERS USED IN THE CASE STUDY

TABLE V
REAL-TIME COMPUTATIONAL EFFORT REDUCTION USING TSS

are associated with the optimal fuel trajectories using
(blue dashed line denoted by) and FS (red dashed-dotted

line) optimization. The power associated with the static feed-
forward control is optimized for steady state power tracking,
where the presence of slow dynamics causes the mismatch be-
tween the response of the static optimal control and the actual

demand. It must be noted that the control solutions of the op-
timization satisfies both hydrogen mole fraction and surge con-
straints, with the corresponding maximum values being 0 (ac-
tive) and 0.45, respectively.

V. CONCLUSION

In this paper, we proposed a multitime scale approach to solve
the trajectory optimization problem associated with IPS PM in
real-time. The use of this approach is beneficial in ensuring
fast and efficient power tracking due to its realtime computa-
tional efficiency. We have implemented the proposed method
on a real-time simulator and have demonstrated both improved
real-time performance due to the control solutions being avail-
able within a sampling interval. This approach will provide the
framework towards the dynamic reconfiguration of AES as the
real-time feasibility of the PM problem is established.

APPENDIX

A. Proof of Proposition 2.1

We list the key ideas used in deriving Proposition 2.1. To
determine the order of the SFM algorithm given in Section II,
we first list the key tasks along with their flop count to compute
control updates per iteration and the order of the algorithm is
given by the dominant term to compute the control updates. For
example, it can be shown the following.

• Performance index calculations: flops,
where is the flop count to compute and

, respectively.
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• Sensitivity functions calculations:
flops, where

and is the flops to compute
and the inner product given by

.
• Step size computation:

flops, where is the flop count for comparing floating
point numbers and is the number of points in the search
space of at which we evaluate the cost, where we assume
a brute force calculations.

• Updating all the control inputs requires flops.
The total FLOP count is given by

. It can be
seen that for the dominant term is the effort for SF
generation, given as

which is .

B. Proof of Corollary 2.1

If we consider the band diagonal structure (See Remark 2.2),
then the flop count for determining the matrix and the inner
product of is given by

. Then for the total effort for SFM
algorithm can be given as

(28)

With a large length of horizon , we have
, which is

.

C. Proof of Proposition 2.2

1) Part A: This follows from Proposition 2.1. Since
, we have .

2) Part B: The flop count with the optimization that in-
cudes level 1 slow time scale optimization as well as the fast
time scale corrections is given by

(29)

where corresponds to the flop counts to com-
pute and for the fast subsystems and

is the number of band diagonal element of fast
dynamics on the fast time scale. If denotes the number of

band diagonal elements of the slow dynamics on the slow time
scale, by definition, we have and , where
denotes the number of band diagonal elements of the overall
system dynamics on the fast time scale. Then we have

where from Proposition 2.2. Under
the assumption , we have is which
proves the corollary.
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