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Abstract— Temperature monitoring is a critical issue for
lithium ion batteries. Since only the surface temperature of
the battery can be measured, a thermal model is needed to
estimate the core temperature, which can be higher and hence
more critical. In this paper, an on-line parameter identification
scheme is designed for a cylindrical lithium ion battery thermal
model, by which the parameters of the thermal model can
be identified automatically. An adaptive observer is designed
based on the on-line parameterization methodology and the
closed loop architecture. A linear battery thermal model is
explored first, where the internal resistance is assumed to
be constant. The methodology is later extended to address
temperature dependent internal resistance with non-uniform
forgetting factors. The capability of the methodology to track
the long term variation of the internal resistance is beneficial
for battery health monitoring.

I. INTRODUCTION

Lithium ion batteries have been widely considered as an
energy storage device for hybrid electric vehicles (HEV),
plug-in hybrid electric vehicles (PHEV) and battery electric
vehicles (BEV). Thermal management is a critical issue for
onboard lithium ion batteries due to their narrow window of
operating temperatures. An accurate prediction of the battery
temperature is the key to an effective thermal management
system and to maintain safety, performance, and longevity
of these Li-Ion batteries.

Some of the previous works on thermal modeling and
management predict the detailed temperature distribution
throughout the cell [1], [2], [3], [4], but are not suitable
for onboard application due to high computational intensity.
Others use one single temperature to capture the lumped
thermal behavior of the cell [5], [6], [7]. Even though the sin-
gle temperature approximation is computationally efficient,
it might lead to over-simplification since the temperature in
the core of the cell can be much higher than in the surface
[8]. It is in the core where major battery thermal breakdown
and degradation occurs.

Lumped thermal models capturing both the surface and
the core temperatures of the cell have also been studied
in [8] and [9]. Such simplified models are efficient for
onboard application due to their limited number of states.
In addition to the higher fidelity of the two-state model,
the prediction of the surface temperature can be compared
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with the measured value, and the errors can be fed back
to correct the core temperature estimation. The accuracy
of the model parameters is of great importance since it
determines the precision of the core temperature estimation.
Model parameters can be approximated by correlating to the
geometry of the battery and the physical properties of all its
components [9], but such approximation may not be accurate
due to the complicated layered structure of the cell and the
interface resistance between the layers. The parameters can
also be determined by fitting the model to the data obtained
from designed experiments [8], [9]. However, some of the
thermal parameters, such as the internal resistance, may
change over the battery lifetime due to degradation, and thus
need to be identified continuously.

An online parameterization scheme is designed in this
paper to automatically identify the thermal model parameters
based on the commonly measured signals in vehicle battery
systems. Based on the online identifier, an adaptive observer
is then designed for core temperature estimation. A linear
battery model with constant internal resistance is investigated
first, where the pure least square algorithm is sufficient for
identification. When the internal resistance of the battery is
non-constant, e.g. temperature dependent [5], [10], a non-
uniform forgetting factora is utilized to identify the time-
varying resistance. The internal resistance of the lithium ion
battery may increase over lifetime due to degradation as the
solid electrolyte interphase (SEI) grows in thickness [11],
[12]. The least square algorithm with non-uniform forgetting
factors is also explored to track the long term growth of
the internal resistance. The growth of the internal resistance
greatly affects the power capability, and can be viewed as an
indication of the battery state of health (SOH).

II. LUMPED THERMAL MODEL OF A CYLINDRICAL
LITHIUM ION BATTERY

A cylindrical battery is modeled with two states [9],
namely the surface temperature Ts and the core temperature
Tc, as shown in Fig. 1. The governing equations for the single
cell thermal model are defined as [9],

CcṪc = I2Re(Tc)+
Ts −Tc

Rc
, CsṪs =

Tf −Ts

Ru(V )
− Ts −Tc

Rc
. (1)

In this model, heat generation is approximated by a con-
centrated source of Joule loss in the battery core, computed
as the product of the current I squared and an internal
resistance Re. The internal resistance Re is modeled as
temperature dependent[5], [10], and described here as

Re =−0.00027T 3
c +0.032T 2

c −1.22Tc +19.8, (2)
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Fig. 1. Single Cell Lump Parameter Thermal Model

where Re is in mΩ and Tc is in oC. Heat exchange between
the core and the surface is modeled by heat conduction over a
thermal resistance, Rc, which is a lumped parameter includ-
ing both the conduction and contact thermal resistance. A
convection resistance Ru is modeled between the surface and
the surrounding coolant to account for convective cooling.
The value of Ru is a function of the coolant flow velocity V ,
as described in [13], [14]

Ru =
D

kNuA
, Nu = qRemPr0.36, Re =

V D
ν

, (3)

where D is the diameter of the battery, A is the surface area
of the battery, k is the thermal conductivity of the coolant,
Nu is the Nusselt number, Re is the Reynolds number, Pr
is the Prandtl number and ν is the kinematic viscosity.
These quantities are related to the physical properties of the
coolant and the geometries of the battery pack, such as the
spacing between cells. They can be calculated for specific
type of coolant and battery pack configuration. Values of
coefficients m and q for various Re ranges can be found in
[13], [14]. The rate of temperature change of the surface and
the core depends on their respective lumped heat capacities.
The parameter Cc is the heat capacity of the jelly roll inside
the cell, and Cs is related to the heat capacity of the battery
casing.

The complete parameter set for this model includes Cc,
Cs, Re, Rc, and Ru. Model identification techniques will be
developed to obtain parameter values based on measurable
inputs and outputs of the model. The thermal model in
Eq. (1) is a nonlinear model since Re is a function of Tc,
and Ru depends on V . Such nonlinearity, especially in Re,
complicates the parameter identification. For simplicity, a
thermal model with constant Re is investigated first, and the
methodology will then be extended to account for the full
nonlinear model.

III. PARAMETERIZATION METHODOLOGY

For model identification, a parametric model

z = θ T ϕ (4)

is derived first by applying Laplace transformation to the
model, where z is the observation, θ is the parameter vector
and ϕ is the regressor [15]. Both z and ϕ should be measured
or can be generated from measured signals.

With a parametric model, various algorithms can be cho-
sen for parameterization, such as the gradient search and the

least squares. The method of least squares is preferred here
due to its advantages in noise reduction [15].

The recursive least squares algorithm is applied in an on-
line fashion, where parameters are updated continuously [15]

θ̇(t) = P(t)
ε(t)ϕ(t)

m2(t)
, Ṗ(t) =−P(t)

ϕ(t)ϕ T (t)
m2(t)

P(t)

ε(t) = z(t)−θ T (t)ϕ(t), m2(t) = 1+ϕ T (t)ϕ(t),
(5)

where m(t) is the normalization factor to enhance the robust-
ness of parameter identification.

In some cases, to make the observation z and the regressors
ϕ proper (or causal), a filter 1

Λ(s) will have to be designed
and applied. The parametric model will then become

z
Λ

= θ T ϕ
Λ
. (6)

IV. PARAMETERIZATION OF THE THERMAL MODEL WITH
CONSTANT Re AND ADAPTIVE OBSERVER DESIGN

In this section, a parameterization scheme and adaptive
observer is designed for the battery thermal model with
constant internal resistance Re.

A. Parameterization Design

The inputs are the current I, the coolant temperature Tf ,
and the coolant velocity V . The measurable output is the
battery surface temperature Ts. A parametric model can be
derived by performing Laplace transformation on Eq. (1),
and substituting unmeasured Tc by measured I, Tf , V and
Ts,

s2Ts − sTs,0 =
Re

CcCsRc
I2 +

1
CcCsRc

Tf −Ts

Ru(V )

−Cc +Cs

CsCcRc
s(Ts −Ts,0)+

1
Cs

s
Tf −Ts

Ru(V )
,

(7)

where Ts,0 is the initial surface temperature. It is noted that
the initial core temperature is considered as equal to the
initial surface temperature as if the battery starts from rest.

For the parametric model in Eq. (7), we have

z = s2Ts − sTs,0, θ = [α β γ µ ]T

ϕ = [I2 Tf −Ts

Ru(V )
sTs −Ts,0 s

Tf −Ts

Ru(V )
]T

(8)

where α = Re
CcCsRc

, β = 1
CcCsRc

, γ = − Cc+Cs
CcCsRc

, and µ = 1
Cs

. It

is noted that Tf −Ts
Ru(V ) is treated as a whole as a regressor, since

Tf and Ts can both be measured, and Ru can be calculated
based on knowledge of V using Eq. (3). With α , β , γ and
µ identified, Cc, Cs, Re, and Rc can be obtained by

Cc =− γ
β
− 1

µ
,Cs =

1
µ
,Re =

α
β
,Rc =− µ2

γµ +β
. (9)

A second order filter should be applied to the signals in
Eq. (7) to make them proper. The filter takes the form

1
Λ(s)

=
1

(s+λ1)(s+λ2)
, (10)

where λ1 and λ2 are designed based on the input and system
dynamics. The least squares algorithm in Eq. (5) can then
be applied for parameter identification.
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B. Adaptive Observer Design
It is a common practice to design a closed loop observer

to estimate the unmeasurable states of a system based on the
measurable outputs. The observer for a linear system

ẋ = Ax+Bu, y =Cx+Du (11)

takes the form [16]

˙̂x = Ax̂+Bu+L(y− ŷ), ŷ =Cx̂+Du, (12)

where x and y are the actual system states, x̂ and ŷ are
estimated states and output, L is the observer gain, and A, B,
C and D are model parameters. The difference between the
measured and the estimated output is used as the feedback
to correct the estimated states.

Comparing with an open loop observer (observer without
output injection), the closed loop observer can accelerate the
convergence of the estimated states to that of the real plant
under uncertain initial conditions, e.g. a Luenberger observer
[16], or optimize the estimation by balancing the effect of
process and measurement noises, e.g. a Kalman filter [17].

For the cylindrical battery thermal model in Eq. (1),

x = [Tc Ts]
T , y = Ts, u = [I2 Tf −Ts

Ru(V )
]T

A =

[
− 1

RcCc
1

RcCc
1

RcCs
− 1

CsRc

]
,B =

[
Re
Cc

0
0 1

Cs

]
,C = [0 1],D = 0.

(13)

An adaptive observer is designed based on certainty equiv-
alence principle [15], where the estimated parameters from
on-line identification in Eq. (5) are adopted for the observer.
The structure of the whole on-line identification scheme and
adaptive observer is shown in Fig. 2.

Fig. 2. On-line Identification Scheme and Adaptive Observer Structure

As shown in Fig. 2, when the thermal management system
is operating in real time, the input current I, coolant tempera-
ture Tf and the measured surface cell temperature Ts are fed
into the parameter identifier to estimate model parameters
Ru, Re and Rc. The adaptive observer, on one hand, adopts
the estimated parameters for temperature estimation, and on
the other hand, takes the errors between the measured and
the estimated Ts as a feedback to correct its core temperature
and surface temperature estimation. The estimations for both
parameters and temperatures are updated at each time step.

TABLE I
NOMINAL VALUES OF PARAMETERS AND INITIAL GUESS

FOR IDENTIFICATION

Parameters Cc(JK−1) Cs(JK−1) Re(mΩ) Rc(KW−1)
Nominal Values 268 18.8 3.5 1.266

Initial Guess 100 50 1 0.5

V. SIMULATION VERIFICATION

Simulation has been conducted to verify the designed
parameterization scheme and adaptive observer. A cylindrical
battery thermal model with parameters for an A123 32157
LiFePO4/graphite battery is used to generate data for ver-
ification of the methodology. Parameters are assumed by
scaling up values from [8] and [18]. Nominal values of the
model parameters are listed in Table I.

The main purpose of the simulation here is to check
whether the designed algorithm can be applied to identify
those assumed parameters and estimate core temperature Tc,
and thus resonable values of the assumed model parameters
are sufficient.

A driving cycle with high power excursion, the Urban
Assault Cycle (UAC) [19], is adopted as the current exci-
tation for the simulation. The UAC cycle and the coolant
flow velocity profile are shown in Fig. 3. The output of the
model, Ts is also plotted in the bottom plot of Fig. 3. The
air flow temperature is fixed at 25oC.
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Fig. 3. Simulated Current and Coolant Velocity Inputs and Surface
Temperature Output for Identification

The generated signals I, V and Ts are used for on-line
least squares parameterization. The four parameters to be
identified, Cc, Cs, Re and Rc, are initialized with the values
in Table I, which are quite away from the nominal values
listed in the same table.

The on-line identification results are plotted in Fig. 4. It
can be seen that all the 4 parameters converge to the nominal
values in Table I.

The response of the adaptive observer, which adopts the
identified parameters by online parameterization, is plotted
in Fig. 5. In Fig. 5, the Tc and Ts simulated by the model are
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Fig. 4. Online Parameter Identification Results
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Fig. 5. Adaptive Observer Response

presented and the estimated Tc and Ts are plotted to evaluate
the performance of the adaptive observer. The simulated core
temperature Tc and surface temperature Ts are initialized to
be 25oC and the adaptive observer is preset to start from
10oC for both the surface and the core temperatures. It can
be seen that the convergence rate of the surface temperature
Ts is independent of that of the parameters because it is
directly measured and fed back to the observer. However, the
convergence of the unmeasured core temperature Tc depends
on the convergence of the parameters. As can be seen in
Fig. 4, the identified Tc converges to the simulated Tc after
the identified parameters converge to the right values.

VI. PARAMETERIZATION OF THE BATTERY THERMAL
MODEL WITH TEMPERATURE DEPENDENT Re

When the battery internal resistance Re is a function of the
core temperature Tc, such as in Eq. (3), the parametric model
in Eq. (7) will no longer be linear and thus direct application
of the identification algorithm in Eq. (5) will result in biased
estimation of the parameters, as shown in Fig. 6.

It can be seen from Fig. 6 that when Re is a function of Tc,
it will be time-varying since Tc is fluctuating all the time. The
least square algorithm in Eq. (5) can only address parametric
models with constant parameters, and its estimation can only
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Fig. 6. Identification Errors when Eq. (5) is Applied Directly to Model
with varying Re

converge to constant values if the stability conditions are
satisfied. As a result, although the real Re is varying, the
value identified by Eq. (5) tends to track its average value.
This will not only introduce errors in Re estimation but will
also affect the estimation of other constant parameters. As
shown in Fig. 6, significant errors can also be observed for
the estimation of the constant parameters Cc, Cs and Rc. Such
errors are introduced because the least square algorithm aims
at minimizing the errors in the model output estimation by
finding a set of optimal parameters. However, in this case,
since the errors in Re identification are inevitable, the other
parameters will also have to be biased to minimize the overall
errors in Ts estimation. Such biased parameterization will
corrupt the estimation of the core temperature Tc without
causing large errors in the estimated surface temperature Ts,
as shown in Fig. 7.
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Fig. 7. Errors in Tc Estimation Brought by Biased Parameters

Such problem can be addressed by treating Re as a time
varying parameter and using forgetting factors in identifica-
tion. When forgetting factors are adopted, the least square
algorithm can be modified by using

Ṗ(t) = ηT P(t)η −P(t)
ϕ(t)ϕ T (t)

m2(t)
P(t), (14)
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as the covariance matrix dynamics in Eq. (5), where η is the
forgetting factor matrix [15].

The least square identification algorithm tries to find the
optimal parameters that best fit the inputs and outputs over
the whole data set. A pure least square algorithm treats each
data point with equal weight, no matter if it is acquired most
recently, or obtained some time earlier. However, when a
forgetting factor is applied, the data points will be weighted
differently. Specifically, the newly acquired data are favored
over the older ones. In the form shown in Eq. (14), the weight
of the data will decay exponentially with the time elapsed,
and the larger the forgetting factor is, the faster such decay
will be. Consequently, the least square algorithm will update
its results of identification primarily based on the recent data
fed into it and thus can track the parameters when they are
time-varying.

The least square algorithm with forgetting factors can be
applied directly to the original linear parametric model in
Eq. (7). Of the four lumped parameters, namely α , β , γ
and µ in Eq. (7), since only α is related to time varying
Re, and all the others are constant, non-uniform forgetting
factors should be adopted here. The η matrix is designed as
diag(η1,0,0,0), where η1 is the forgetting factor associated
with α (and hence Re).

Simulation is conducted with η1 = 0.35, and the results
of identification are shown in Fig. 8. It is noted that the
identified Re can now follow the real varying Re, and as a
result, there is no bias in the estimation of the other constant
parameters. Consequently, with the identified parameters,
the adaptive observer can now estimate the battery core
temperature Tc accurately even when the internal resistance
Re is temperature dependent, or a function of other variables,
such as SOC. as shown in Fig. 9.
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Fig. 8. Identification of Temperature Dependent Internal Resistance by the
Least Square Algorithm with Non-uniform Forgetting Factors

VII. DEGRADATION DETECTION BY MONITORING
GROWTH IN INTERNAL RESISTANCE

The recursive least square algorithm with forgetting factors
can also track the long term growth of the internal resistance,
which can be used as an indication for the state of health
(SOH) of the battery.
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Fig. 9. Adaptive Estimation of Battery with Temperature Dependent
Internal Resistance by Forgetting Factors

Different from the variation of the internal resistance
caused by the fluctuation in the core temperature of the bat-
tery, the growth of the internal resistance due to degradation
is a process that occurs slowly over the battery lifetime. The
internal resistance might increase substantially over hundreds
of current cycles or days according to [11], [20] and [12].

In this paper, the growth in internal resistance due to
degradation is simulated and used to test the capability of
the identification algorithm to detect the slow increase of the
resistance. The internal resistance Re, originally a function
of the core temperature Tc, is now augmented with a term
which is linearly increasing over time. The drive cycle used
for simulation is the same UAC cycle shown in Fig. 3, but is
repeated for 500 times and the rate of growth in internal
resistance is set at 0.17%/cycle. The rate of degradation
may also increase with the temperature according to [11],
[20] and [12]. This effect is not considered here since the
main purpose of the simulation is to test the identification
algorithm.

The results of the online identification are shown in
Fig. 10. It can been seen from Fig. 10 that the real internal
resistance (simulated) gradually increases over time and is
subject to short-term variation due to the fluctuation of the
battery core temperature. The identified Re follows both the
long-term and short-term variation of the real one with a
small delay as shown in the inset of Fig. 10. In real vehicle
application, since Re is varying all the time, it is difficult to
evaluate SOH by the instantaneous value of Re. Therefore,
the averaged Re might be a better choice instead. The mean
value of Re for each UAC cycle is plotted in the lower half
of Fig. 10. It is noted that the averaged Re can capture the
long-term increase of the internal resistance and the identified
value is a good estimation of the real one.

VIII. CONCLUSIONS AND FUTURE WORK

The core temperature of a lithium ion battery, which
is usually not measurable, is of great importance to the
onboard battery management system, especially when the
batteries are subject to high C-rate. The core temperature
can be estimated by a two states thermal model, and the
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Fig. 10. Identification of Internal Resistance Subject to Degradation

parameters of the models are critical for the accuracy of the
estimation. In this paper, an online parameter identification
scheme based on least square algorithm is designed for the
cylindrical lithium ion battery thermal model. The online
identification scheme can automatically identify the model
parameters based on the commonly available onboard signals
and update the observer for adaptive monitoring. When the
internal resistance of the battery is temperature dependent,
which is a more realistic situation, the least square algorithm
can be augmented with non-uniform forgetting factors. The
algorithm with forgetting factors can not only track the
time-varying internal resistance, but also guarantee unbiased
identification of the remaining constant parameters. The
online parameterization also shows the capability to track
the long-term variation (over cycles and days) of the internal
resistance due to aging or degradation/abuse. The growth in
internal resistance can be used for the SOH monitoring of
the batteries. The methodology developed has been verified
with simulations and is to be validated with experiments in
the immediate future.

Applications, such as HEV, BEV and PHEV, usually have
hundreds, or even thousands, of battery cells in series to
meet their high power and energy requirements. Hence the
vehicle level battery thermal management will be performed
on a module basis, instead of on a cell basis. The single cell
thermal model used in this paper can be scaled up to a pack
model by considering cell to cell thermal interaction, and
the parameterization methodology and the adaptive observer
design will be investigated for the pack level model. Initial
results of this pack level work can be found in [21].
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