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ABSTRACT
In this paper, we introduce the problem of “desert fog,” a
condition wherein a view of an information world contains
no information on which to base navigational decisions. We
present a set of view-based navigational aids that allow
navigators to find their way through desert fog in multiscale
electronic worlds. Prototypes of these aids have been
implemented in the Landmarking and ZTracker systems.
We introduce the concept of critical zone analysis, a
method of grouping objects according to their visibility in
views of the information world rather than their spatial
layout. This concept was derived from a formal analysis of
desert fog using view-navigation theory. Our analysis
informally extends view-navigation theory to accommodate
spatial multiscale worlds and is detailed in the paper.
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INTRODUCTION
The unwavering fog limited her vision to a small
rectangle of utterly uniform sand. The Oasis had been
to her right earlier, but the sudden fog only let her
guess at where it was now. She couldn’t even tell if she
had moved up or down. With mounting desperation,
she rose a bit. The next rectangle of sand bounded by
fog was identical to the last rectangle of sand bounded
by fog.

SJul, Visions of Desert Fog

I've been lost before; this is exactly what it looks like.
Hawkeye Pierce, M*A*S*H

Many human endeavors entail navigation through an
environment. Interaction with electronic worlds is no

exception. However, electronic worlds often present new
navigational problems as well as new ways of solving them.
In the scenario just described, the navigator is faced with a
situation where the immediate environment is totally devoid
of navigational cues. This is a rare occurrence in the
physical world, but is common and inherent in certain types
of electronic worlds. We have called this phenomenon
“desert fog,” and seek to understand it as well as to find
ways of helping users to find their way through it.

Desert fog can occur in many electronic environments, but
is inherent and pervasive in multiscale worlds. These are
worlds in which information can exist at multiple levels of
detail—from microscopic features to major landscapes. In
our experience with Pad++ [1], a widely-distributed
experimental multiscale environment, desert fog causes
severe navigational problems for both novice and
experienced users. With infinite scale, there is always more
room between things to explore. Like Hawkeye, navigators
in Pad++ know what being lost looks like: Nothing.

By navigation we mean the cognitive process of
determining and following a path, based on knowledge of
and information in the environment. The subordinate tasks
of traversal—movement through the environment—and
steering—controlling movement—are assumed in this
definition [7] and are often the subjects of research on
navigation. The focus of our work is on characterizing and
supplying the information needed by the navigator to make
correct navigational decisions. We work in the context of
multiscale worlds, but focus especially on spatial multiscale
worlds. These combine multiscale with strongly physical
metaphors for interaction, such as fly-through or zooming,
and are becoming increasingly common.

Our goal is to design ways of helping users to navigate
through very large, constantly changing multiscale
information worlds that contain desert fog. In this paper, we
present a navigational aid that is based on the concepts of
critical zones and critical zone analysis. Critical zone
analysis dynamically identifies groups of objects that are
defined by what objects may appear together in views of the
world. It is applied to Pad++ in the ZTracker prototype
system. We derive our approach from an analysis of desert
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fog using view-navigation theory [3]—a theoretic
understanding of necessary navigational properties of
information structures.

Throughout our work, we seek solutions that require as few
assumptions as possible about the information space, its
information content and the navigator. We constrain
ourselves by assuming that the information is under full
ownership of the user, i.e., that it may not be altered by the
system (including reorganizing its spatial layout). In the
work reported here, we concentrate on showing the
navigator where there is information. We leave the equally
important problem of describing what the information is for
the future.

Our work makes two contributions. The first contribution is
the concept of critical zone analysis and the navigational
aids based thereon. Critical zone analysis provides a means
of grouping information that neither assumes nor implies
that the spatial layout of the world is meaningful. Groupings
are based purely on object visibility. The second
contribution is the analysis of desert fog. It provides an
understanding of desert fog that can be used in developing a
variety of strategies to address it in a variety of contexts.
Many of these strategies are applicable to the general class
of desert-fog-like problems wherein the environment
contains only navigational cues that are not useful to the
user.

The descriptions of the design concepts and the theoretical
analysis may be read independently of each other. Readers
who are familiar with view-navigation theory or who have a
particular interest in the details of the theoretical analysis
may wish to read the section “View-Navigation Analysis”
before the section “Addressing Desert Fog.”

RELATED WORK
Desert fog has become a more pressing concern with the
emergence of spatial multiscale interfaces but is not a new
problem. Numerous designers have devised ways of
managing desert fog problems. Typically, they address the
problem either when the space itself is created or when
information is placed within it.

Under strategies that address the problem when the space is
created, there is, in the beginning, nothing, not even empty
space. Authors have to create everything, including patches
of desert fog. Many authoring tools, such as the Rooms
environment [5], and hypertext systems rely upon such
strategies to prevent desert fog. Few authors would create a
maze of identical rooms or identical web pages.

Under strategies that address the problem when the
information is embedded in the space, there is, in the
beginning, only empty space which the author is seeking to
populate. These strategies are generally enforced only by
designer and implementor discipline. The common
approach is to create an island of information surrounded
by desert fog and make it clear that there be desert fog
beyond the boundaries of the island. This strategy is

UNDERSTANDING SPACE-SCALE DIAGRAMS

maxsize

minsize

Magnification (scale)

Ob
Oa

Position (e.g., x or y)

w1

w2

w3

Space-scale diagrams were developed as a tool for
understanding multiscale spaces [4]. They show the
apparent change in size and position of an object relative to
the magnification of the view. In the sample diagram above,
the horizontal axis indicates location in screen-space (e.g.,
x-coordinate) and the vertical axis indicates degree of
magnification (the scale-coordinate). Note that zooming “in”
and “out” correspond to moving “up” and “down,”
respectively, in a space-scale diagram.

In the simple case, an object only grows in size as it is
magnified. Such geometrically-scaling objects, like Oa in the
sample diagram, have a V shape in a space-scale diagram,
indicating that the object appears to be infinitely small at
infinitely small scales, and keeps growing larger as the view
is magnified. In real interfaces, an object typically has a
minimum visible size, its minsize, and disappears, at least,
when it is smaller than a pixel. Objects also have a
maximum effective size, the maxsize; e.g., when they fill the
view uniformly they are often culled by the rendering
system. These limits are shown schematically for object Ob

in the sample diagram.

w3w2w1

A particular view of the world is defined by the position in
space and scale of a window with a given width. This is
represented in a space-scale diagram by a horizontal line
whose midpoint represents of the center of the window.
(Note that we assume uniform magnification across any
particular view.) Since the width of the window is unaffected
by the magnification of the view, a line representing a
particular window will have the same width throughout the
diagram. In the sample diagram, w1 is a view in which Oa

fills the middle third of the window, as shown in the first of
the screen-shots above. w2 has zoomed in on (the now
magnified) Oa, as shown in the second screen-shot. w3 has
zoomed in further and panned right almost half a window
width, as shown in the third screen-shot.
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typically applied to homogeneous cohesive collections of
information that readily form single or well-connected
islands of information. The WING [11] interactive tourist
guide and TimeLines [10] visualization of the history of
photography are typical examples of this strategy.

General solutions can be imagined that address desert fog at
either space-creation or information-embedding time.
However, we have chosen to address desert fog at
navigation time. We assume that the world contains desert
fog and the navigator needs to find their way through it.

DESERT FOG IN PAD++
Pad++ provides a concrete context for our work and has
served as the testbed for our ideas. Before embarking on a
solution to desert fog, we describe Pad++ [1] and how
desert fog affects interactions in Pad++ worlds. In this and
following discussions, we rely heavily upon the space-scale
notation developed by Furnas and Bederson [4], and
described in the box “Understanding Space-Scale
Diagrams.”

The metaphor for Pad++ is an infinite two-dimensional
surface that can be magnified uniformly and infinitely.
Interaction is through panning and zooming. Objects have
position and extent on the surface, but appear differently on
the screen depending on the magnification or scale of the
current view.

There are two causes of desert fog in Pad. First, desert fog
arises because the space (the Pad++ surface) exists
independently of any embedded information and is itself
visually homogeneous. In a Pad++ world with no embedded
information, there are no navigational clues anywhere. With

information embedded, there are navigational clues only in
views in which information objects can actually be seen.
Second, desert fog arises because objects have a natural or
imposed minimum (and, possibly, maximum) size at which
they are rendered. That allows information objects to be
invisible in some views even though they are contained in
those views. (By contained, we mean that the view can be
reached simply by zooming in.) Any solution to the desert
fog problem must speak to both sources.

Figure 1 illustrates a multiscale world with six objects and
much desert fog. A navigator has several choices in any
view. They can zoom out (decrease the magnification—
“down” in a space-scale diagram), zoom in (increase the
magnification—“up” in a space-scale diagram), or pan in a
variety of directions. Since there is no way to tell which is
the correct choice in a desert fog view, it is not surprising
that even experienced Pad++ users laugh when asked to
accomplish tasks that require navigation through desert fog.

ADDRESSING DESERT FOG
We include the full view-navigation analysis of desert fog
later, but summarize the results here to motivate the
development of our navigational aids.

The analysis revealed two properties that must hold for a
general solution to desert fog. First, there must be a single
unambiguous action to be taken in a desert fog view. This is
consonant with the intuition that the problem in desert fog
is not that there is no navigational information, but rather
that the navigator does not know what to do when there is
no navigational information. Second, all navigational
information provided must be structured so that only a
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Figure 1 A multiscale world with no navigational aids and six objects, A-F. Without navigational aids most views in the world
are in desert fog—including w1, w2 and w3 as can be seen from the screen-shots in the right top row.

This figure (and several of the following) is composed of three parts. (1) On the left, a space-scale diagram containing three
views, w1, w2 and w3. (Note that we only provide “x–z” space-scale diagrams that do not account for the y-coordinate.) (2) On
the right, top row, three screen-shots from Pad++ corresponding to the views from w1, w2 and w3. (3) On the right, bottom row,
the views from w1, w2 and w3 as they would appear if they had no minsize (as indicated by the lightly shaded “V”s in the
diagram). For the purposes of illustration, the relative sizes of the objects are designed so that there are views in which all
objects could be seen (as in w1) if their minsizes permitted. In normal use, it would be highly likely that there would be no view
in which all objects, or even objects C-E and object F (as in w2), could appear together. This distortion underplays the severity
of the desert fog problem.
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small amount is presented in any given view. This is
consonant with the intuition that too much information will
clutter the view and, potentially, confuse the navigator.

To provide a single unambiguous action, we create
multiscale residue for all objects in a view. Residue, a
view-navigation term, is evidence that leads a navigator to
believe that a particular object may be found in a particular
direction. Multiscale residue is residue that exists across
scale. If an object has multiscale residue, this residue will
be visible in all views in which the object is contained. The
object can then be reached by zooming in. If the object does
not have residue in a particular view, the object is not
contained in that view. Zooming out willdue to its
converging propertyalways lead to a view in which the
object’s residue appears. If there is no residue of an object
in one view, it can be reached by zooming out until its
residue is visible, then zooming in on the residue. We
experimented with two ways of providing multiscale
residue. The first indicates particular points in space, while
the second indicates particular regions.

To reduce the amount of navigational information in each
view, we experimented with two ways of grouping objects
so that they can share residue. The first is based on
traditional cluster analysis and the second is based on the
visibility of objects in different views.

Cluster Analysis
Our first instinct was to group information objects based on
their spatial layout. Assuming that the layout is not random,
we applied traditional cluster-analysis techniques [2], using

the spatial (x, y) distance between objects as the distance
metric.

As an example of this approach, we used single-link
agglomerative clustering [2]. Two objects were grouped
together if they were within a certain distance of each other.
(We experimented with a variety of both fixed and variable
distances.) This proximity test was applied, transitively, to
all objects in the world, and then, recursively, to the
resulting clusters. This yields a nicely hierarchical grouping
of the information objects with clusters from a single pass
of the algorithm forming a level in the hierarchy. We then
added a visual indicator—a landmark—to the display for
each internal node in the hierarchy. This landmark is
independent of scale, so does not grow or shrink as the user
zooms in or out (landmarks resemble conventional grab-
handles) and, so, constitutes multiscale residue for the
group. This results in the space-scale profile and
corresponding views from our Landmarking system shown
in Figure 2.

Two parameters of the display of landmarks proved to be
particularly insidious. First, where should the landmark be
located? The geometric center of the group is simple, but
may not be meaningful in representing the group. It would
be more desirable to use the location of the object that, for
the user, is most representative of the group. Identifying
groups and their representative objects has been
investigated by psychologists [8, 9, 12] and was explored in
the LEADS system [6]. These efforts all show that it is not
a simple matter. The second problematic parameter was
how many and which levels of the hierarchy to display at
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Figure 2 Multiscale hierarchical residue in the Landmarking system. Objects A and B form a cluster marked with landmark Q.
Objects C-E form a cluster marked with landmark R. Object F is in a cluster of its own, marked with landmark S. The clusters
marked by R and S, in turn, form a composite cluster, marked with landmark T. The visibility range of a landmark is, in this
version, determined as being from the maxsize of its associated cluster, if it is a composite cluster, to the minsize of its
containing cluster if is a member of a composite cluster.

Landmarks appear as small red squares (resembling conventional grab-handles). At this time, there is no visual distinction
between landmarks marking simple and composite clusters. The right upper row of images is screen-shots from the
Landmarking system and the lower row shows the views as they would appear if the objects were made visible. As the user
zooms from w1 toward w2, the landmark for cluster 652 (labeled in the screen-shot) will move left, eventually, out of the view,
leaving the landmark for cluster 654 in the view. As the user zooms from w2 toward w3, the landmark for cluster 650 eventually
appears or moves into the view from the left.
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any given time. Clearly, displaying all levels potentially
results in cluttered views. Showing a single level at a time,
e.g., the lowest level in the view, solves the basic desert fog
problem. However, it is still difficult for the navigator to
predict where landmarks will appear.

These difficulties highlight a shortcoming of applying
cluster analysis to the spatial layout: Semantics and spatial
layout are confounded making it necessary to have some
understanding of the semantics of the objects in order to
provide meaningful navigational guidance. A more
insidious problem is the danger of falsely conveying an
impression of meaningful structure. The hierarchical
structure identified by cluster analysis may or may not have
been intended—and therefore be meaningful—by the
author(s) of the world, but users may be inclined to assume
that it was. Rather than attempting to understand ways of
analyzing semantics, we re-visited our view-navigation
analysis and realized that “it's about views, not objects.”

View Analysis
Upon re-visiting our analysis of desert fog we recognized
the significance of views, in general, and of the current
view, in particular. Abandoning the effort to provide
residue of objects, we sought to provide residue of views.
We distinguish between interesting views that contain
information objects, and desert fog views that do not.

Three key insights underlie our final design approach. First,
in order to achieve our goal of helping users to find where
there are things in a world containing desert fog, it is
sufficient to provide residue only of interesting views.
Second, by relying on the unambiguous action provided by
multiscale residue, it is sufficient to provide residue only of
views that are contained in the current view. Third, it is

sufficient for residue to indicate a general direction, as long
as this general direction becomes increasingly specific as
the view gets closer. A strict requirement is that all
interesting views contained in a view must have residue in
that view.

Pursuing these insights, we developed the concept of
critical zones. Intuitively, a critical zone is a region of the
view where zooming in leads to interesting views. More
formally, a critical zone is a region in a view that is
guaranteed to contain interesting views. Any one critical
zone must be contiguous, and it must be the smallest region
of its family of shapes (rectangles, circles, etc.) that
contains a particular set of interesting views. This led to the
view-based navigational aids that we explored in the
ZTracker prototyping system.

ZTRACKER
ZTracker is an exploratory system developed in Pad++ to
experiment with navigational aids based on critical zones.
ZTracker tracks rectangular critical zones as the user moves
through the world. In each view, the critical zones (if there
are any in that view) are indicated visually by tracing their
outlines. Critical zone indicators are multiscale, and grow
and shrink like normal objects, but have a fixed minimum
size, so never disappeareven at very small scales. As a
result, in a view with no critical zones (i.e., a desert fog
view), the appropriate navigational strategy is to zoom out
until one appears. In the current implementation, critical
zone indicators change color when all objects in the world
are contained in the current view. This keeps the navigator
from zooming out infinitely.

We have developed three algorithms for computing critical
zones. One computes the critical zone that contains all
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Figure 3 Multiscale residue in ZTracker using the Single Critical Zone algorithm. In the space-scale diagram, the heavily
shaded portion of each view (w1, w2 and w3) denotes the critical zone in that view. These critical zones are indicated with
rectangles in the screen-shots on the right. The upper row of screen-shots is from the ZTracker system and the lower row is
the same views as they would appear if the objects were made visible. The critical zone in w1 contains objects A-F, that of w2

contains objects C-F, and that of w3 contains D and E, as can be seen in the lower row of images. The critical zone in W1 is
colored to indicate that it contains all the objects in the world. As the user zooms from w1 toward w2 by zooming in on the
rectangle in w1 the rectangle expands. When it reaches the edge of the screen it will disappear and another rectangle (for the
critical zone containing B-F) will appear. This rectangle, in turn, will grow until it reaches the edge of the screen, when it is
replaced by the rectangle in w2. A similar sequence of transformations occurs as the user zooms in from w2 toward w3.
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objects in a view, one decomposes this single critical zone
into a set of smaller critical zones, and one computes all
window-sized critical zones in a world.

Tracking a Single Critical Zone
In the simplest case, we show at most one critical zone. In
ZTracker, this critical zone corresponds to the bounding
box of all objects contained in the view. More generally, it
is the projection onto the window (using the same
projection technique as the rendering system) of the
bounding volume of all objects contained in the view. It is
computed, in ZTracker, simply by asking the Pad++ system
to find all objects within the window rectangle, then finding
the bounding box of those objects. Figure 3 shows a space-
scale diagram and the corresponding screen-shots from
ZTracker for the single critical zone method.

Although our experience with tracking a single critical zone
is limited, we have found it to be surprisingly helpful.
Merely distinguishing desert fog views from interesting
views is helpful (and anxiety-reducing). Users quickly
become adept at inferring locations of interesting views
from changes in critical zones during zooming. One
obvious shortcoming of tracking a single critical zone,
however, is that it frequently captures a great deal of desert
fog. If no objects are actually visible, there is no way for the
navigator to predict where in the critical zone to zoom in
and they may spend too much time zooming in on desert
fog, only to have to backtrack. (Of course, critical zones
make it possible to know when to backtrack and how far
back to go.)

Tracking Critical Zones Recursively
In order to provide the navigator with more detailed
information than a single critical zone, we explored a
variety of recursive algorithms. (Note that we still strive to
keep the number of critical zones indicated in a view small.)

We use a divide-and-conquer strategy to refine a given
critical zone into a set of smaller critical zones. The initial
critical zone is always the largest critical zone in the current
view (i.e., the critical zone identified by the single-zone
algorithm). To refine a critical zone, it is first subdivided
into a set of regions—rectangles in ZTracker. (We shall
explain how we subdivide a critical zone shortly.) The
largest critical zone, if any, within each region is then
determined by applying the single-zone algorithm to the
region. The algorithm is then applied recursively to each of
the resulting critical zones until all critical zones are either
smaller than some fixed minimum size or contain only a
single object.

On first impression, any means of subdividing critical zones
would serve. However, arbitrary divisions such as division
into quarters, or dividing along object boundaries, may
bisect objects. In the current implementation, only fully
contained objects are included in critical zones, so bisected
objects would be excluded from any subsequent critical
zones and would be lost. This would violate the

requirement that all interesting views have residue in views
in which they are contained.

The subdividing algorithm implemented in ZTracker uses
the window pixellation to determine subdivisions. (This is,
in some ways, similar to ray-tracing algorithms used in
computer graphics). A (rectangular) critical zone is divided
into four regions by shrinking it on each side successively
by one pixel-width. (One pixel-width may correspond to
many units on the Pad++ surface, so many objects may be
eliminated at once.) This results in four over-lapping
regions, as illustrated in Figure 4.

Figure 5 contains an example space-scale diagram and
corresponding screen-shots from ZTracker using the
recursive critical zone algorithm.

Bottom-Up Computation
Critical zones can also be computed using a bottom-up
algorithm. This pre-computes all possible critical zones for
a given world. For all sets of (transitively) adjacent objects
(including sets containing only one object), the scale at
which the bounding box of the set is the size (along the
largest dimension) of the window is computed and stored.
This box will be a critical zone in all views that contain it
and that are at a scale smaller than the computed scale.
Figure 6 is a space-scale diagram indicating all possible
critical zones of the size of the window. Note that some
critical zones may reach window size at scales greater than
the objects that they contain (indicated by horizontal dashed
lines in the diagram). To maintain the integrity of critical
zones—regions that contain interesting views—these are
never indicated at scales larger than any of their contained
objects.

Once the critical zones have been computed, a variety of
methods can be used to select those that should be indicated
in a view. Our single-zone algorithm yields the critical zone
at the smallest scale that is contained in the current view.
The recursive algorithm yields all critical zones in the
current view that are smaller than the minimum zone-size,
but at the greatest scale of any nested set of which they are
a member.

VIEW-NAVIGATION ANALYSIS
The concepts used in ZTracker and the Landmarking
system were inspired by an analysis of desert fog using
view-navigation theory [3]. We present that analysis here in
hope of providing a deeper understanding both of desert fog
and of view-navigation theory. We apologize, in advance,
for redundancies resulting from the earlier summary.

C DB1 A

Figure 4 Subdividing a critical zone. Critical zone 1 is
subdivided into the regions A-D by successively
shrinking 1 by one pixel-width on each side.
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View-navigation theory [3] provides a characterization of
the properties that make an information structure navigable.
It defines a view-navigable structure as a structure in which
it is possible to determine how to get from any point to any
other using only the information available in successive
views. It was originally developed in the context of
information worlds that are entirely defined by the
information itself. We have had to extend the initial theory
to accommodate spatial worlds in which the information is
embedded in a pre-existing space. Our analysis
demonstrates these extensions, but we do not attempt to

formalize them here. It is important to note that this duality
of embedded information and pre-existing space is one of
the sources of desert fog in Pad++: Traversal—actual
movement—is generally relative to the pre-existing space,
while navigation—cognition about paths—is relative to the
embedded information.

Traversal Requirements
At the heart of view-navigation theory is a concept called
the viewing graph. This is a directed graph in which nodes
correspond to views in the information world, and links
correspond to traversible connections between views. In a
spatial multiscale world, views are portions of the pre-
existing space—portions of the surface in Pad++—
described by the location in space-scale of a given window.
In a spatial multiscale world, links are single acts of
traversal—in Pad++, a simple zoom or pan action. A link
leading out of a view is an out-going link or outlink.

In order for a world to be traversible, two requirements
must be satisfied:

1. Short paths must exist between all nodes, and
2. All views must have a small number of outlinks,

where “short” and “small” are relative to the overall
viewing graph.

Furnas and Bederson [3] have shown that the first
requirement is satisfied for spatial multiscale worlds. This is
due to the ways in which a scale dimension affects the
fundamental geometry of a space. For example, imagine
adding a third spatial dimension to a two-dimensional
space. The shortest distance between any two points is
unaffected: it is still a straight line. Now imagine adding a
scale dimension to the original two-dimensional space. The
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Figure 5 Multiscale residue in ZTracker using the Recursive Critical Zone algorithm. In the space-scale diagram, the heavily
shaded portions of each view (w1, w2 and w3) denote the critical zones in that view. m indicates the minimum size for critical
zones. (Note that m is artificially large for diagrammatic purposes. In actual use typical minimum sizes would be a small
fraction of the window width.) In w1 the initial critical zone containing objects A-F is below the minimum size so is not refined
further. On the screen, it is colored to indicate that w1 contains all objects in the world. In w2 the initial critical zone containing
C-F is refined into the two critical zones containing C-E and F, respectively. In w3 the initial critical zone containing objects D
and E is, again, below the minimum size so is not refined further. During zooming in, critical zones containing more than one
object will expand until they are larger than the minimum size. They will then be replaced by multiple critical zones as has
happened in w2.
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Figure 6 Bottom-Up computation of critical zones.
Horizontal lines indicate window-sized critical zones.
Dashed critical zones are those that are at a scale greater
than any of their contained objects. There will be a critical
zone for each set of (transitively) adjacent objects. A
critical zone may appear in views from an infinitely small
scale to the scale at which it becomes larger than the
window.
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shortest distance between two points may no longer be a
straight line. Rather it may involve zooming out (moving
through scale), panning slightly (moving in a spatial
dimension), then zooming back in (moving through scale
again). This “indirect” path through scale can be
logarithmically shorter than moving at a fixed scale (pure
panning). Moving through scale is analogous to navigating
through a book by using the table of contents rather than
flipping through the pages.

The second traversal requirement, on outlinks, holds in
large information world that is usable through a
(necessarily) resource-limited interface: Only a subset of all
possible views in a spatial multiscale world is diagrammed
in a space-scale diagram. In Figure 7, the views that can be
reached, in a single step, from the view centered at w are
those centered within the small gray region around w. This
is a very small fraction of the diagrammed set of views, and
an even smaller fraction of all possible views. There is
exactly one outlink from a given view for each view
reachable from that view, so each view clearly has a small
number of outlinks relative to the number of views in the
world.

Navigation Requirements
Navigational residue is evidence in a view that leads a
navigator to believe that a particular target node may be
reached by following a particular link. This composite
concept consists of the clue provided by the environment
along with the navigator's interpretation of and possible
inferences based on that clue. Good residue is residue that
correctly leads the navigator to believe that a shortest path
to a node goes through a particular link, while bad (or
misleading) residue does so erroneously. Outlink-info holds
this navigational residue, producing clues to an outlink,
e.g., in the form of a textual label.

In order for a world to be navigable, it must be traversible
and satisfy two additional requirements:

3. All views must contain good residue of all nodes, and
4. All links must have small outlink-info.

In other words, any view must contain sufficient
information to allow the navigator to choose correctly
where to go next to get to1 any desired node, and the
amount of information about options presented in each view
must be small. Note that “small” can now be interpreted
relative to the number of overall views (as in the traversal
requirements) or relative to the navigator's information-
processing capabilities. We must, at least, satisfy the
requirement relative to the overall number of views. We
hope to satisfy it relative to the navigator's capabilities, at
least in the average case.

                                                          
1 As originally defined, strong view-navigability [3] requires that “get to

any node” is via a shortest path. In this paper, we relax this requirement
and work with paths that can be shown to be within a small additive

constant of shortest paths.

Spatial multiscale worlds do not fulfill either of these
requirements. Desert fog views contain no outlink-info and,
hence, no good residue. No outlink-info is small outlink-
info, technically, but useless. We can thus re-cast the
problem of addressing desert fog as a problem of providing
good residue and small outlink-info in all views.

Providing Good Residue
Strictly speaking, there is a small amount of navigational
information implicit in a desert fog view: The target object
is elsewhere. This implicit outlink-info is called improper
outlink-info to distinguish it from the normal, usually
explicit proper outlink-info. Improper outlink-info, like
proper outlink-info, is good outlink-info if it actually leads
the navigator to the target.

In a spatial multiscale world, any outlink eventually leads to
desert fog, so desert fog views collectively have good
residue in all views. Since any particular desert fog view is
made interesting only by its location relative to one or more
interesting views, we focus on providing residue of
interesting views. That is, we seek to provide good residue
of all and only interesting views. We have two means of
achieving this. We can provide good proper residue, or we
can convert the bad improper outlink-info into good
improper outlink-info. In other words, show the way to
objects, or provide a single way to go if the way to a
particular object is not indicated.

While a desert fog view tells the navigator that the target
object is elsewhere, there is no way of knowing in which
direction “elsewhere” lies. I.e., there is no way of knowing
which type of desert fog the view contains. In Figure 7, we
characterize different types of desert fog based on the
actions required to get from a view to a given information
object. This results in dividing the space into regions in
which all views require the same action. (Views are defined
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Figure 7 The anatomy of desert fog for pan/zoom
interfaces such as Pad++. Regions O (the object itself)
and 1 contain only non-desert fog views (also known as
“interesting views”). To reach the object from region 2, it is
necessary to zoom out; from 3, zoom in; from 4, pan; from
5, zoom and pan. (The gray area around w's center shows
the views reachable from w.)
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by their window centers.) The regions O and 1 do not
contain desert fog views: within O, the window center is
already somewhere over the object, and in region 1 (half a
window wide) the object is still partially within the view.
All other window positions are in regions of desert fog.
They all look the same—no object is visible—but require
different actions: If one is in region 2, one would have to
zoom out; in 3, zoom in; in 4, pan in some (unspecified)
direction, in 5, use some combination of zooming and
panning.

However, if there were a single default way to go to find
any object from desert fog (“when it looks like this go that-
way”), the improper outlink-info would be sufficient and
therefore good. If the viewing device could present, and the
human viewer could perceive, infinite resolution, desert fog
views would never contain objects. (All contained objects
would be visible and the view would not be a desert fog
view.) There would never be anything to zoom in on, so the
correct navigational action in a desert fog view would
always be to zoom out.

This infinite resolution scenario is diagrammed in Figure 8.
If an object is in the view, it would have good proper
residue. If it is not, it would have good improper residue.
All objects would have multiscale residue (residue that
reaches through scale). Multiscale residue can be emulated
in a finite resolution world by not allowing objects to have
a minsize. For example, we could always leave one or more
pixels to represent the object, as illustrated in Figure 9.

Providing good residue by supplying multiscale residue for
each object in a view solves the basic desert fog problem. If
an object in the view is not visible for some reason, its

multiscale residue will alert the navigator to its presence—
stemming one source of desert fog. If there are no objects in
the view, there will be no multiscale residue and the
navigator will know to zoom out until something comes into
view—alleviating the other source of desert fog. This
approach for providing good residue depends on the
converging property of zooming-out. Panning does not have
a converging property, so the approach cannot be used in a
pan-only world.

Providing Small Outlink-Info
Providing individual multiscale residue of every object is
not a navigationally satisfying solution. Intuitively, views
with large numbers of objects will be cluttered. Formally,
view-navigation requirement 4 (small outlink-info) is
violated. A single link potentially leads to all objects in the
world so the outlink-info for that link would need, if every
object is to have individual residue, to enumerate all
objects. This outlink-info will be as large as the number of
objects in the world. This may be small with respect to all
possible views (meeting the traversal requirement), but may
not be small with respect to the navigator's capabilities. The
implication of view-navigation requirement 4 is that views
must be grouped so that they can share outlink-info. We
have explored two grouping methods in ZTracker and the
Landmarking system.

FUTURE WORK
We are still seeking to understand the practical implications
of view-based navigational aids, in general, and critical
zones, in particular. We are planning user studies to test the
sufficiency of critical zones for navigational purposes and
to learn about the significance of their dynamic nature.
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O 1

w1

w2

 w3

2

Figure 8 Anatomy of desert fog with infinite resolution
viewer. A window zooming out moves along a line towards
the origin and must eventually move from the desert fog
region to region 1 where the object first appears at the
edge of the window. Since this is the case for all views in
the desert fog region, there is only one type of desert fog,
type 2, with an unambiguous navigational action available.
(In region 2’, zooming out actually brings the window
center over some part of the object.) The object has
natural multiscale residue.
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Figure 9 Object in a world with finite resolution, but no
minimum size (e.g., objects are never allowed to
disappear or get smaller than one or, as shown, more
pixels). From infinite zoom-out to the scale of the object's
former minsize the object is a constant size, then grows
normally as the scale increases further. This is seen in the
diagram as the parallel sides of the object begin to diverge
at the former minsize scale. (In any view, zooming out
brings the window center over some part of the object.)
The object has artificial multiscale residue.
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Along with basic usability, we would like to investigate the
need for indicating nested critical zones and the need for
refinement of overlapping critical zones. We are also
planning on comparing the effect of aids using view-based
grouping and aids using conventional clustering on users’
perceptions of information worlds.

Our present work has concentrated on automatically
showing where there are things of interest. The next major
step of research is to show what those things are.
Generation of appropriate labels is a difficult problem in
semantically-based systems. Because of the dynamically
changing groupings, we expect labeling to be even more
difficult in view-based systems. Nonetheless, we recognize
that we cannot achieve full navigability without labeling.

DISCUSSION
We have introduced the problem of desert fog and
demonstrated a set of navigational aids that address its
effects. Our aids are based on the concepts of multiscale
residue and critical zone analysis. These concepts were
derived from an analysis of desert fog using view-
navigation theory in the context of spatial multiscale
worlds. To accomplish this, we had to extend view-
navigation theory to accommodate worlds that are defined
by embedding information into a pre-existing space.

Critical zone analysis differs from conventional clustering
techniques in three significant ways. First, because the
resulting groups are view-dependent, groups change
dynamically as the user moves through the world. Second,
the resulting structure of groups is a semi-lattice rather than
a hierarchical tree, meaning that overlapping groups are
possible. Third, and most importantly, the analysis does not
assume that the spatial layout of the information is
meaningful, nor does the resulting grouping convey an
impression of semantic coherence within groups.

Desert fog, as presented here, is representative of a larger
class of desert-fog-like problems wherein a view contains
navigational clues, but these are inaccessible to the
navigator. For instance, they may be obscured or lost in
visual clutter. Combining critical zone analysis with
filtering mechanisms may serve to alleviate such problems.

Desert fog and desert-fog-like problems abound in spatial
multiscale worlds regardless of their interaction metaphor.
For instance, being blockedand not knowing whyby an
object that fills the view is a known problem in 3D walk-
through worlds. In such worlds, it may be desirable to use
view-based navigational aids to indicate where things are
not, e.g., “critical zones” that show directions in which it is
possible to move. Whether view-based navigational aids
can be applied to other types of worlds remains to be seen.

We hope that we have provided a general way of thinking
of desert fog problems that can lead to other types of
solutions. We also hope that we have provided a useful
example of solving a navigational problem using view-
based navigational aids.
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