
Lodestones and Leylines 1 13-Nov-00

Lodestones and Leylines:
Designing Locomotion in a Personal File System

Susanne Jul
Electrical Engineering and Computer Science

University of Michigan
sjul@acm.org

ABSTRACT
We report on an exercise intended to help articulate
constraints on locomotion and their implications for design.
The assumption that locomotion is in service of navigation
leads us to consider both cognitive and mechanical
constraints. The exercise is to design support for accessing
files in a hierarchical file system in the course of ordinary
computer-based work. Characterizing the design situation in
terms of four possible sources of locomotional constraints
(the navigator, the task, the environment and the
circumstances) leads to an abstract design of a dynamic
locomotional mechanism that provides rapid accurate
access to a small set of files. Applying this abstract design
in Microsoft Windows™ and Jazz yields two quite different
specific designs. The exercise results in a broad
organization of the factors that constrain locomotion into
three categories: Locomotional mechanism, Navigational
resources and Navigational effect.

KEYWORDS
Locomotion, Navigation, Information Navigation,
Hierarchical File System, File Access, Lodestone, Leyline,
Multiscale, Jazz, Pad++, Windows, Zooming User
Interface, Space-Scale Diagram, Design Framework.

INTRODUCTION
It is a fairly safe bet that you have some experience in using
a computer to accomplish your daily tasks and that you
interact regularly with a file system probably
hierarchical to access your files. Stop for a moment and
consider what kinds of navigational aids would be most
useful to a user, such as yourself, to find and get to the files
you need. A common response is, in some form or another,
“a map,” that is an overview of all the files in the system.
We have come to believe that this is the wrong answer. This
paper describes the reasoning behind this conclusion and
offers the beginnings of a framework for identifying the
salient navigational characteristics of a design situation and
using them in generating useful designs.

By navigation, we mean the task of getting from one

location to another. This encompasses the cognitive activity
of deciding how to get there as well as the cognitive and
mechanical activities involved in getting there. Navigation
is fundamental to much human activity, including most
human-computer interaction. However, it is generally
incidental to such activity, that is, a means to an end rather
than the end itself. As such, it takes extra time, consumes
cognitive resources such as memory and attention, and
disrupts the flow of the primary activity. Our goal is to
develop designs that minimize navigational overhead.

The concept of locomotion or “getting there” is at the heart
of navigational activity. The locomotional structure and
mechanisms of a space (what locations are and how one
moves between them) determine what navigation is
necessary and possible. In the physical world, locomotion is
constrained by the laws of physics and human anatomy. In
an electronic world, all aspects of locomotion must be
designed explicitly and may even be subject to dynamic
modification.

Most prior work on navigation in electronic spaces has
sought to apply navigational techniques that are successful
in the physical world. Such approaches may preclude the
development of novel navigational techniques only possible
in electronic worlds, and encourage the transfer of
techniques that reflect adaptations to special properties of
the physical world. We rely heavily on research on
navigation and spatial thinking done in the physical world,
but seek to understand the inherent navigational
possibilities and requirements of a design situation. Thus,
we avoid the a priori assumptions implicit in any given
navigational technique.

In this paper, we report on an exercise intended to help
articulate the factors that constrain locomotion and explore
their implications for design. We assume that locomotion is
in service of navigation. The exercise is to design support
for accessing files in a hierarchical file system in the course
of ordinary computer-based work. This file access task is a
commonly occurring task that we ourselves perform
frequently and for which commercial applications provide
numerous designs for comparison. The design is limited to
support for locating and opening files (file system access).
Support for creation and placement of files (file system
modification) remains for an expanded exercise.

We first characterize the design situation in terms of four
possible sources of locomotional constraints: the navigator,

Copyright © 2000 SJul

Lodestones and Leylines 2 13-Nov-00

the (superordinate) task, the environment and the
circumstances under which the task is performed. We then
draw a set of locomotional implications from this
characterization and use them to develop an abstract design
(a description of the essential characteristics of a design).
This abstract design is applied in two different user
interface environments, Microsoft Windows™ and Jazz
(the Java-based successor to Pad++, a multiscale zooming
environment). The resulting Windows design reproduces
existing features, but uses them slightly differently than
does the existing interface. The Jazz design introduces
novel features. The Jazz design has been implemented and
preliminary user tests have been highly encouraging.

As a result of this exercise, we have identified three
categories of locomotional properties that may be
constrained by navigational needs: Locomotional
mechanisms, Navigational resources (both cognitive and
mechanical), and Navigational effects (e.g., learning about
the space). The categorization, along with the four sources
of constraints, provides the beginnings of a framework that
describes both what questions designers need to ask during
the design process and what they should do with the
answers. The similarity of the Windows design to existing
designs that have evolved over years of use and the
apparent utility of the Jazz design lead us to believe that
this is a promising approach to helping designers produce
effective designs rapidly.

RELATED WORK
Prior work on locomotional design typically regards
locomotion as being in service of either a specific
interaction need, such as pointing and selecting, or a
particular type of environment. In contrast, we view
locomotion as being in service of navigation, which, in turn
is in service of some superordinate task, and which takes
place in some particular environment.

We divide navigation into three sub-tasks [15]. Locomotion
is the task of moving from one location to another.
Wayfinding is the task of determining how to get from one
particular location to another. Spatial knowledge
acquisition is the task of learning about spatial relationships
between locations. Locomotion has both cognitive and
mechanical components, while wayfinding and spatial
knowledge acquisition are cognitive tasks. We further
divide locomotion into steering, controlling movement, and
traversal, actually moving.

Task-Oriented Locomotion
Work on input devices steering controls in navigational
terms typically focuses on the mechanical problems of
pointing, selecting and free-hand drawing [1]. This work
rarely, if ever, considers the cognitive affects of devices.

Steering in 3D has attracted considerable attention. Two
specific techniques reduce cognitive load by simplifying
steering. In Point of Interest navigation [16], the user
indicates a point on an object on which they would like the

view focused. The system then computes and moves the
viewpoint along a “nice” path to that view. In Path Drawing
[11], the user draws a path on the 2D display device. The
system then computes a corresponding path in the 3D world
and moves an avatar along that path.

Both these techniques rely on implicit traversal constraints:
Point of Interest navigation by pre-defined notions of “nice”
paths, Path Drawing by pre-defined laws of physics
(gravity, impenetrable surfaces) combined with object
placement in the space. Both reduce the cognitive demands
of steering, but neither contributes to reducing the overhead
of wayfinding or spatial knowledge acquisition. Both
techniques are limited to locomotion within a single view.

Another approach to steering in 3D bases locomotion on
tools for wayfinding and spatial knowledge acquisition.
Overview maps, such as that provided by a map window
[3], provide an overview of the contents of the world. The
user controls movement in a separate detail view by
selecting or manipulating a rectangle corresponding to the
detail view on the overview map. In a related fashion,
Worlds-in-Miniature [20] allow users to hold a miniature
view of a 3D virtual world and, fantasy-like, “step into” the
World-in-Miniature, reentering the virtual world at a
different location. These techniques simplify the mechanics
of locomotion, but pre-suppose the need for wayfinding and
spatial knowledge acquisition tools. Both techniques rely on
the destination location being visible in an overview.

Environment-Oriented Locomotion
Interface metaphors generally embody a traversal
mechanism. For example, most WIMP interfaces (those
based on windows, icons, menus and pointers) use one-way
visually-discontinuous hyperlinks that jump from icons to
windows. (For our purposes, we define a hyperlink as a
traversal mechanism that, once initiated, moves from a pre-
defined source location to a pre-defined destination location
with no further user intervention.) Interfaces with concepts
of continuous space commonly employ flythrough or
walkthrough mechanisms that emulate locomotion in the
physical world. Such mechanisms inherit the cognitive
support for navigation (or lack thereof) of the underlying
metaphor.

In a different approach, the Pad environment [21] was
developed from the principles of spatial cognition. The
interface metaphor is of a conceptually infinite two-
dimensional surface. The surface can be viewed at an
infinite range of magnifications. Objects have position and
extent on the surface, and can appear differently depending
on the magnification (scale) of the view. Locomotion is by
panning (moving across the surface) and zooming
(changing the scale of the view). Both space and scale
dimensions are conceptually continuous and infinite. This
metaphor supports standard cognitive mechanisms of
spatial knowledge (both acquisition and application) [13,
25], but wayfinding and steering have proven seriously
difficult [14].

Lodestones and Leylines 3 13-Nov-00

CHARACTERIZATION OF THE DESIGN SITUATION
The present exercise is not concerned with how to gather
information about a particular design situation or whether
the information used is generally accurate. The focus is on
identifying factors that constrain locomotion and the
process of using knowledge of these factors in generating
designs. Consequently, the characterization of the
hypothetical design situation is derived from our personal
experience. Had this been a real design, a significant part of
the designer’s task would have been to collect and validate
the pertinent information about their design situation.

We presuppose that navigation is a context-dependent task
[17] in which a particular user is trying to accomplish a
particular task in a particular environment under particular
circumstances. This assumption yields four possible sources
of constraints on navigation and, consequently, on
locomotion: the navigator, the superordinate task, the
environment in which the navigation takes place and the
circumstances of the navigational activity. For instance, cats
choose quite different routes than humans, a mail carrier
might need quite different transportation when working and
when on vacation, ways across cities are quite different
from ways through mountains, and some people always
walk on the sunny side of the street. So we characterize our
design situation in terms of these four elements.

Design Situation
Our basic assumption is that the user is a “normal” user
using a “normal” desktop personal computer system a la
late twentieth century. The system uses a hierarchical file
storage system. It is a single user system and we are
designing support for the regular user. Our immediate goal
is to support inter-file navigation with no concern for intra-
file navigation.

The User
The user has “normal” physiology (vision, eye-hand
coordination, etc.) as well as “normal” cognitive skills and
resources (memory, attention, reasoning, etc.). They are at
least somewhat familiar with the interface provided and
may be expert users. As this is their own system, they have
organized at least part of the file system themselves. Thus,
they have some understanding of the way it is organized
and some memory of where things are. This knowledge may
be incomplete and it may be inaccurate, in particular, recall
of exact names and locations of files may be faulty [23].

The Task
The file access task is undertaken for multiple purposes.
We do not speculate on these purposes, but assume that
they give rise to the following tasks: (1) finding a specific
file in order to edit, display or copy its contents, (2) starting
an application to create content, or (3) modifying the file
system by deleting unnecessary files, reorganizing the
structure or saving content to a new location. For the
present exercise, we concentrate on the first two types of
tasks.

Our experience suggests three patterns of access to a
particular file: burst use, fleeting use and regular use. In
burst use (Figure 1A), the user uses a file intensively for a
period of time and only rarely after that. This pattern is
typical of document preparation. In fleeting use (Figure
1B), a file is accessed a few times in a short period of time,
then not accessed for a long while. This typically represents
information “look-up” in the superordinate task. In regular
use (Figure 1C), a file is accessed regularly on a continuing
basis. This is typical of files that represent regularly used
applications. These patterns may be apparent within single
as well as across multiple sessions; e.g., a file may be used
once an hour for one day, while another is used once a
month every month. Use of one file frequently overlaps use
of another. Our experience suggests that the majority of file
accesses are part of a burst or regular use pattern.

In our experience, the user only accesses a small number of
the files in the environment manually. The remaining files
are accessed, if at all, by software and not by the user
directly. Those files that are accessed manually tend to
cluster in groups or subhierarchies. These subhierarchies
contain related information and their hierarchical structures
are significant to the user.

Note that, while these observations are based on
introspection, they are borne out by studies conducted by
Barreau and Nardi [2]. They studied use of information
rather than files, and report categories of working,
ephemeral and archival information. The first two are
analogous to our categories of burst/regular and fleeting
use, respectively. Nardi et al. [18] confirm our assumption
that users typically only access a small number of the
overall files. The behavior patterns described match those
evinced by “knowledge work” as described by Williamson
[27]. (This is in contrast to “procedural work,” e. g., data
entry, where few files are used repeatedly.)

F
re

qu
en

cy
 o

f u
se

Time
(A) Burst use (B) Fleeting use

F
re

qu
en

cy
 o

f u
se

Time

 (C) Regular use

F
re

qu
en

cy
 o

f u
se

Time

Figure 1 File access patterns.

Lodestones and Leylines 4 13-Nov-00

The Environment
We assume that the environment constitutes a personal
information space and has a relatively stable structure. This
structure is, conceptually, a collection of hierarchical tree
structures although a common root node may be provided
that converts the forest into a single tree. Changes to the
structures and their contents are mostly incremental. There
is a single, medium-sized (10"-20"), pixellated, 2D display
device. Input is based on use of a mouse and the interaction
metaphor favors direct manipulation. We do not assume any
particular interaction metaphor at this point.

The Circumstances
We assume that the user carries out their superordinate task
under comfortable conditions. That is, while they might like
to complete the task rapidly, there is no critical urgency to
complete it or any aspect of it. The user is able to devote
most, if not all, their cognitive and physical resources to the
task. If any external aids (documents, other people, etc.) are
present, these pertain to the superordinate rather than the
file access task.

Locomotional Implications
The locomotional structure offered by the environment is
that of the file hierarchy: Locations are the nodes of the
trees and routes follow the tree structure. While some of
these locations and routes may be more important than
others in terms of the semantic interpretation of the tree,
none are distinguished in terms of locomotion.

The significant objects for the task, in contrast, are files,
that is, leaf nodes in the tree structures. Internal nodes are
not significant to the task. The patterns of use of files
encourages us to distinguish between files that are part of
an active or incipient burst or regular use pattern and those
that have not been accessed manually for some period of
time. This indicates two variants of the file access task:
repeated file access, in which the target file is already part
of a pattern, and initial file access, in which it is not. In the
initial access task, all leaf nodes are potential target
locations. However, in the equally important and more
frequent (in our design situation) repeated file access task,
target locations represent a small subset identifiable by
patterns of use of all leaf nodes.

The routes suggested by the task also differ from those
offered by the environment. For the initial access task, the
problem is selecting among a large set of possible
destinations a wayfinding problem. For the repeated
access task, the primary problem is not selecting the
destination, but getting there a locomotional problem.
Both are facilitated by short routes, ideally single steps, but
longer routes interfere directly with the repeated access
task. Traversing the tree structure, as required by the
environment, is not beneficial in the repeated access task,
while it may facilitate wayfinding decisions in the initial
access task [7, 8].

The environment requires knowledge of the organization of
the tree structures for efficient navigation [7, 8]. This
knowledge can either be precise memory of locations and
routes, or it can be knowledge of the semantics of the
structure. The navigator has this knowledge, but it may be
partial or inaccurate. The circumstances are such that the
navigator is able to direct their attention to applying this
knowledge, however, at the expense of the superordinate
task. This knowledge is not inherently needed for the task,
so need only be acquired if necessary for future navigation.

We conclude that the two variants of the file access task
differ navigationally. An informed design for the initial
access task requires further examination from a wayfinding
perspective. The repeated access task, however, is
amenable to a locomotional design approach. The
characterization indicates that the most useful navigational
aid for repeated file access is a locomotional mechanism
that provides rapid accurate access to small set of leaf
nodes. The set of leaf nodes is determined dynamically
based on access history, with files that have been used
recently and extensively (in terms of frequency and
duration) being candidates. The characterization indicates
that map-like navigational aids, which treat all nodes in the
file system trees equally, are not appropriate for the
repeated access task.

DESIGNS: LODESTONES AND LEYLINES
The following designs develop locomotional support for the
repeated access task. This is not to belittle the initial access
task, but acknowledges that, in our design situation, the
repeated access task is the more common variant of the file
access task. Also, design for the initial access task requires
additional analysis from a wayfinding perspective.

We first develop an abstract design that describes the
essential characteristics of a final design. We then apply
this to two different interface environments that each adds
different locomotional constraints.

Abstract Design
The shape of the abstract design is straightforward at this
point. The design provides a mechanism that monitors the
time, frequency and duration of use of each file that is
accessed manually. A formula of the form

duration * frequency
c * time since last use

where c is some appropriate constant, is used to compute
the likelihood of a file being accessed again. The
locomotional structure of the space is augmented so that
there is a central location, which can be reached in one step
from any location. Further augmentation provides short
paths from this central location to those files that have a
high likelihood of being accessed. These files are called
lodestones (since they “attract” navigational attention). We
define short paths as being of length one for regular and
burst use files and two for fleeting use files. This new
locomotional structure is updated as files are used.

Lodestones and Leylines 5 13-Nov-00

Thresholds for including and categorizing lodestones would
need to be determined empirically and, probably, be under
user control to some extent. Similarly, the user should be
able to override the dynamic classification, for instance,
making a file a permanent lodestone so that it serves a
reminding or nagging function.

In the applications of the abstract design, our interest is in
the design of the dynamic locomotional structure. We
recognize that determining when a file is actually in use and
classifying usage patterns of a file are non-trivial problems.
Our specific designs merely suggest naïve solutions.

Windows Design
We presume that the reader is familiar with the Microsoft
Windows™ interface and the desktop metaphor upon which
it is based, so do not explain the metaphor here.

Windows Environment Characteristics
Windows maps the tree structure of the file system onto a
system of icons and windows. Open windows represent
active files (leaf nodes representing documents or
applications) as well as internal nodes. Icons represent both
leaf and internal nodes. Clicking on an icon opens the
corresponding window. There is a single special desktop
“window” that is always available that provides a
workspace in which to manipulate windows. Conceptually,
this desktop is not part of the file system, but usually
contains icons that represent the roots of the file system
trees.

There are three ways of accessing a particular file. First,
one can follow the file system tree structure by starting at
the top and clicking through icons and windows until the
desired file is reached. Second, one can use the “Explorer”
interface, a map-like mechanism that displays a tree
diagram in one part of a window and the contents of a
single (selected) internal node in another. The diagram is
manipulated until the icon representing the desired file is in
view. The tree structure, in this case, is traversed mentally
and not always mechanically, offering a sense of
locomotion across the structure. Third, shortcuts can be
created that provide direct access to a particular location in
the tree. Shortcuts are represented as icons and can be
stored within a tree structure or on the desktop.

Locomotional Implications
The Windows environment defines three types of locations:
icons, windows, and the special directly-accessible desktop.
Traversal is via hyperlinks from icons to windows. Routes
either follow the file system structure or are one-step
shortcuts that cut across it. Like the basic environment,
efficient navigation in a Windows environment requires
knowledge of the organization of the tree structures.
However, this knowledge can be less accurate due to a
reliance on recognition rather than recall for wayfinding. If
the appropriate shortcuts are available, no such knowledge
is needed.

This suggests that the target locations for the file access
task in a Windows environment are windows representing
open files. Icons serve as locomotional intermediaries, but
are not themselves target locations. Shortcuts match the
kinds of routes suggested by the task.

Specific design
We base our specific design on use of the desktop and
shortcuts. Specifically, we use the taskbar, an iconic menu
on the desktop, as our central location. We use a file being
open in a running application and the corresponding
window being visible on the screen as our metric for file
usage. The design for the locomotional structure is
illustrated in Figure 2A. There are three separate areas for
the three types of lodestones. Shortcuts to regular and burst
use lodestones are all shown directly. Only the most likely
of the fleeting use lodestones is shown, along with an arrow
indicator for a flyout menu displaying the rest. We elect to
have regular use lodestones appear as icons only, whereas
burst and fleeting use lodestones have text labels alongside
their icons. The exact configuration of inclusion and
placement of text labels should be under user control.

For completeness, we present a conjectured locomotional
design for the initial access task. This design is based on
intuition and the recognition in our characterization of the
file access task that files accessed manually tend be
clustered together in the file system. In this design (Figure
2B), we place shortcuts directly on the desktop, allowing
them to be reached in one step from most “File Save As”
dialogs. On the right, there is permanent access to the roots
of the trees in the file system. On the left, there are
shortcuts to regularly used clusters of files. We suspect,
based on our own experience, that they correspond to the
lowest common ancestors in the file tree of burst and
fleeting use lodestones and can be identified using a
relatively simple algorithm. (Note that this algorithm does
not consider the route used to access a file.) Accordingly,
they are managed dynamically like lodestones.

Implementation and Testing
The Windows design has not been implemented, but it is
possible to approximate the suggested design using existing

Clusters
(Regular use)

(Tree root
access)

Lodestones
(Regular use)

(Currently
active files)

Lodestones
(Burst use)

Lodestones
(Fleeting use)

(A) Taskbar (B) Desktop
Figure 2 Windows design. (A) Dynamic locomotion
structure for repeated file access task. (B) Conjectured
locomotional support for initial access task.

Lodestones and Leylines 6 13-Nov-00

features. Maintaining the locomotional structure to reflect
current file use requires constant effort and attention.
Despite this effort, the author finds this approach quite
productive and rarely uses the standard navigational tools
outside of localized clusters.

Jazz Design
Jazz [5, 12] is the Java-based successor to Pad++ [4], which
was based on Pad [21]. The interface metaphor is the same
as that of Pad, described earlier. Note that the pan and
zoom model of locomotion moves the viewpoint relative to
the surface and, thus, to objects on the surface, whereas the
Windows model has a fixed viewpoint and moves objects
relative to the desktop.

In the following discussion, we rely on the space-scale
notation developed by Furnas and Bederson [9] for
description of interactions. This notation is summarized in
the box “Understanding Space-Scale Diagrams.”

Jazz Environment Characteristics
Jazz is an application framework designed to support the
development of multiscale applications using zooming user
interfaces. It does not provide a metaphor for or means of
interacting with files or the underlying file system, so our
design for its use as a desktop is both speculative and
suggestive. We presume that the user would organize files
on the surface, much as they would on a physical desktop,
using spatial proximity to indicate semantic relationships
and scale to fit the desired objects into the (conceptually)
allocated space. This implies that the layout of objects on
the surface is entirely under user control. Navigational aids
are not at liberty to alter the layout.

Bederson and Hollan [4] suggest two techniques for
interacting with files. First, they suggest a zooming
directory browser. This is analogous to the icon-window
means of traversing the file system in Windows. Rather
than clicking on an icon to open a window, in the directory
browser, the user zooms in on the object representing an
internal node. As this object is magnified, the details of its
contents become visible and zoom-in can continue on the
next level until the desired file is reached. Second, they
suggest that zooming in on a particular file automatically
starts the appropriate application.

The theoretical space-scale origin (x = 0, y = 0,
magnification = 0) is a special location in Jazz. At this
point, objects are infinitely small and are all rendered
(theoretically) at the same screen location. As the view
zooms out (magnification decreases), all points on the
surface converge visually. This convergent property is
evident in the classic V shapes of space-scale diagrams.

Locomotional Implications
In Jazz, locations are views in space-scale, i. e., a point on
the surface and a magnification at which it is being viewed.
By convention, being at a view means that the viewpoint is
centered on that point in space and the scale of the view is
set to that magnification in scale. Routes are trajectories

UNDERSTANDING SPACE-SCALE DIAGRAMS

maxscale

minscale

Magnification (scale)

Ob
Oa

Screen position
(e.g., x or y)

w1

w2

w3

Space-scale diagrams were developed as a tool for
understanding multiscale spaces [9]. They show the
apparent change in size and position of an object relative to
the magnification of the view. In the sample diagram above,
the horizontal axis indicates location in screen-space (e.g.,
x-coordinate) and the vertical axis indicates degree of
magnification (the scale-coordinate). Note that zooming “in”
and “out” correspond to moving “up” and “down,”
respectively, in the diagram.

In the simple case, an object only grows in size as it is
magnified. Such geometrically-scaling objects, like Oa in the
sample diagram, have a V shape in a space-scale diagram,
indicating that the object appears to be infinitely small at
infinitely small scales, and grows larger as the view is
magnified. In practice, an object typically has a minimum
magnification at which it is rendered, its minscale, or
automatically disappears when it is smaller than one pixel.
Objects also have a maximum effective magnification, the
maxscale; e.g., when they fill the view uniformly they are
often culled by the rendering system. These limits are
shown schematically for object Ob in the sample diagram.

www

A particular view of the world is defined by the position in
space and scale of a window with a given width. This is
represented in a space-scale diagram by a horizontal line
whose midpoint represents of the center of the window.
(Note that we assume uniform magnification across any
particular view.) Since the width of the window is unaffected
by the magnification of the view, a line representing a
particular window will have the same width throughout the
diagram. In the sample diagram, w1 is a view in which Oa
fills the middle third of the window, as shown in the first of
the screen-shots above. w2 has zoomed in on (the now
magnified) Oa, as shown in the second screen-shot. w3 has
zoomed in further and panned right almost half a window
width, as shown in the third screen-shot.

Lodestones and Leylines 7 13-Nov-00

through space-scale, i. e., paths from view to view. (It is
possible to program movement that jumps between views
with no visual continuity, but this is contradictory to the
basic philosophy of the environment.)

If there is a view in which all objects on the surface are
visible at sufficient detail to be recognized and that view
can be found from anywhere in the space, navigation in
Jazz requires no prior knowledge [14]. In our experience,
this only occurs in small specially-designed worlds. If no
such view exists, then the navigator must know the layout
of objects on the surface and in scale. This layout may or
may not correspond to the file system structure.

The mismatch between the concepts of location in the file
access task in Jazz and the Jazz environment itself is
immediately apparent. Locations in the task are views of
objects, while locations in the environment are points in
space-scale. This suggests that locomotion should be
relative to objects on the surface rather than to the surface
itself.

Specific Design
We could employ a specific design in Jazz that is analogous
to the Windows design by providing a menu of “shortcuts”
that would change the current view to focus on the desired
objects. However, we wish to respect the spatial nature of
the environment and support locomotion that retains the
sense of spatial movement.

File usage statistics can no longer be based on the opening
and closing of windows. Instead, we adapt Bederson and
Hollan’s idea and consider a file as being in use when the
object representing it is visible on the screen and larger than
some minimum size. A daemon mechanism runs
periodically to collect statistics. Another possibility would
be to track the “opening” and “closing” of individual files

by collecting information at the conclusion of each pan or
zoom.

The environment offers only one special location, the
space-scale origin, but this is not useful for practical
purposes. However, the fact that the set of lodestones is
finite suggests another: the view that is centered on the
bounding box of all lodestones whose magnification is the
largest at which that bounding box will fit within the
window. This view is called the Top of the [Lodestone]
World and serves as the special location called for by the
abstract design. Since, by definition, all lodestones are
within the window rectangle and can thus be reached by
zooming in, zooming out beyond this view serves no
purpose. So zoom-out is constrain in two ways (Figure 3):
Zooming out always moves towards the Top of the World,
and zooming is not permitted past this view. We call space-
scale trajectories that constrain locomotion leylines (after
the mythical lines in Celtic tradition that can be followed to
nodes of power and, in some cases, yield access to the fairie
realms).

Lodestones can be reached from the Top of the World by
zooming in. To ensure direct routes to lodestones, zoom-in
is constrained to follow the shortest path from the current
view to the center of a lodestone (Figure 4). Such a zoom-in
leyline ends at the lodestone’s maxscale, if any, so zoom-in
is only permitted if there is a lodestone in the view.

In the present implementation, the user presses a mouse
button to zoom in. The system selects the lodestone whose
center is closest to the mouse location and begins to follow
the leyline toward that lodestone. Only lodestones that are
contained in the current view are considered. If, during the
zoom, the user moves the mouse closer to another
lodestone, the system switches to the leyline leading to that

B
A

C

wT

w1

w2 w2

w1

wT

Figure 3 Zoom-out is constrained to move toward, but
not past, the Top of the [Lodestone] World (wT). In the
space-scale diagram, this is shown as dotted arrows.
In the schematized views on the right, lodestone
locations are indicated by dots. Zoom-out is possible
from w1 and w2, but not wT. Gray lines in the space-
scale diagram show the defining boundaries of the Top
of the [Lodestone] World.

B
A

C

w1

w2

wT

w2

w1

wT

Figure 4 Zoom-in is constrained to follow a leyline
(black arrows) to a lodestone contained in the current
view. If there are multiple lodestones in the view, the
leyline that leads to the lodestone whose center (gray
lines) is closest to the mouse location is followed. In
wT, clicking anywhere in the light gray area leads to A,
medium gray to B and dark gray to C. Clicking
anywhere in w2 leads to B, anywhere in w1 to C.

Lodestones and Leylines 8 13-Nov-00

lodestone. An alternate steering control treats leylines as
hyperlinks and automatically follows a leyline to its
destination once it has been selected.

Leylines represent an aberrant zoom behavior in Jazz. In
spite of the use of zoom “in” and “out” to describe
following leylines, leyline trajectories are generally
combined zoom and pan movements. “In” and “out” merely
denote the direction of the zoom component. This is evident
in Figure 3 - Figure 5, where leylines do not intersect the
space-scale origin. Zoom-in leylines are in two parts: the
first is a pan-zoom that centers the view on the lodestone,
with the lodestone nearly filling the view in at least one
dimension, the second a pure zoom used once the lodestone
is centered in the view. This two-part behavior is
particularly evident in Figure 4 when following the leyline
from view w1 to lodestone B.

Constraining locomotion to leylines reduces the number of
locomotional options in each view greatly (Figure 5), and
reduces the number of navigational decisions the user must
make accordingly. It also simplifies steering significantly
and, incidentally, limits movement to a finite volume of
space-scale (Figure 5). These latter two properties
serendipitously address two major problems with the
default navigation mechanisms in both Pad++ and Jazz: the
general difficulty of steering and the near certainty of
getting lost in space-scale [14].

The Windows design segregated the three types of
lodestones so that burst and regular use files were more
easily accessible than all but one of the fleeting use files. In
the Jazz design, lodestones are weighted according to their
likelihood of access. When selecting among possible
leylines, lodestones with a higher weight (heavily used burst
files or regular files) have a stronger pull. Thus, the
distance calculation of how “far” a lodestone is from the
mouse location is weighted with the likelihood of that
lodestone being the target location.

For completeness, we conjecture a design for the initial
access task. As for the Windows design, these ideas are not

based on analysis, but rather on intuition and experience
with the environment. In Jazz, the initial access task is a
two-part problem: the file must first be located in the file
system and then placed on the surface. For the first part,
interaction with the underlying file system, we suggest a
dialog window containing a secondary surface with a
directory browser as designed by Bederson and Hollan [4].
Clusters act as the lodestones of this surface. They are
identified as in the Windows design. While placing the new
objects on the primary surface, spatial groups of existing
lodestones (identified using a spatial clustering algorithm)
act as lodestones. A keyboard modifier allows the user to
move off leylines temporarily during this time. A similar
“zooming dialog” interface is used for finding and
launching applications, much in the manner intimated by
Perlin and Meyer [22].

Implementation and Testing
The Jazz design is fully implemented. A small formative
study comparing lodestone and leyline locomotion to the
Pad++ model has been completed. Both models use
separate mouse buttons for zoom-in and zoom-out. In the
Pad++ model, the center of the zoom follows the mouse.
Panning was permitted in both cases, using a keyboard-
modified mouse action, but few subjects used this
capability. All subjects ended by favoring lodestones and
leylines, although some had slight difficulty in giving up the
manual control afforded by the Pad++ model. All subjects
spontaneously reported feeling less lost or confused and
more confident about their actions when using lodestones
and leylines. Two subjects attributed this, in part, to the
ease of returning to the Top of the World. One subject had
to be persuaded to return to the Pad++ model to navigate a
second layout (Figure 6).

RESULTS OF THE EXERCISE
In addition to the two specific designs, the exercise yielded
a broad organization of the factors that affect locomotion.
These fall into three categories: Locomotional mechanism,
Navigational resources and Navigational effect.

In the exercise, task and environment were the primary
sources of constraints on locomotional mechanisms,
determining locations, routes, and time spent on traversal.
The Jazz environment raised issues surrounding the
accuracy in following routes and reaching locations. In a
different design situation, the circumstances might play a

B
A

C

w1

w2

wT

w2

w1

wT

Zoom-in: C
Zoom-out: wT

Zoom-in: B
Zoom-out: wT

Zoom-in: All
Zoom-out: —

Figure 5 Locomotion constrained by lodestones and
leylines. E.g., wT offers 3 options, w2 and w1 two each.
Consequently, interaction is restricted to the gray area.

Figure 6 Example Jazz world used in user tests.

Lodestones and Leylines 9 13-Nov-00

more important role, e. g., if the machine were networked
and file access dependent on network connectivity. A
different user population might be confused by a dynamic
locomotion structure and benefit more from a slow but
fixed structure.

Task and environment were also the primary sources of
constraints on navigational resources in the exercise. The
environment dictated knowledge of the locomotional
structure, whereas the task indicated that devoting cognitive
resources to applying such knowledge would be counter-
productive. Interestingly, knowledge of the navigator did
not add constraints, but was needed to ensure that the
precondition of the environmental constraint was satisfied.
Other resources that might be constrained include the
presence of navigational tools (substituting for actual
knowledge), external assistance (e. g., from others), time
allotted for task, etc.

The acquisition of spatial knowledge was the only
constraint on navigational outcome in the exercise. The task
did not inherently require spatial knowledge, but, if the task
were to be repeated in the basic environment (as assumed),
acquiring spatial knowledge during task performance would
facilitate future interactions. Other navigational outcomes
might include enjoyment, distance traversed, exposure to
certain types of intermediate locations (e. g., sites of
historical interest), etc. Many of these are dictated by
individual preferences and longer-term goals.

FUTURE WORK
We would like to pursue three lines of research further.
First, further evaluation of the proposed designs is needed.
This includes implementing and testing the Windows
design and a more formal study of the Jazz locomotional
mechanisms. Also, the present implementation of the Jazz
design uses fixed rates of locomotion. We would like to
experiment with varying rates of motion based on the
distance to be traversed and the number of locomotional
options in view.

Second, we intend to develop a more formal framework of
the factors that affect locomotion and their implications for
design. This entails revisiting the psychological literature
on navigation and spatial cognition, further design studies
(for example, varying the task rather than the environment,
as in the present exercise) to elucidate the framework itself
and design studies to validate the framework.

Finally, we would like to investigate the computational
implications of view-dependent interaction. For example, in
the present exercise, thumbnail views of objects were used
as wayfinding aids. This may require a different minscale
setting for the object than that used in the primary view
camera. However, the present Jazz implementation assumes
a one-to-one association between object and minscale.
Thumbnails imply a one-to-one association between an
object-camera pair and the minscale value.

SUMMARY
We have described a design exercise aimed at exposing the
factors that affect locomotion and explore their implications
for design. Characterizing our design situation in terms of
four possible sources of locomotional constraints (the
navigator, the task, the environment and the circumstances)
led us to conclude that appropriate locomotional support for
the repeated file access task is a dynamic locomotion
mechanism that gives rapid accurate access to a small set of
files. Using this mechanism neither requires nor incurs
overhead for spatial knowledge acquisition. From these
conclusions, we developed an abstract design that describes
the essential characteristics of a final design, which, applied
to the Windows and Jazz environments, yielded different
specific designs.

Although the characterization of the design situation was
based on introspection rather than analysis, it is noteworthy
that the resulting designs reflect known ideas as well as new
ones. The design goal of maintaining a dynamic locomotion
structure is consistent with the theory of cost-structuring of
information spaces [24] and empirical evidence that people
expend considerable effort to reduce wayfinding in the
course of accomplishing their tasks in electronic worlds
[26]. Basing lodestone designations on usage patterns is
reminiscent of combining concepts of history mechanisms
[6, 19] with the notion of read wear and edit wear [10].
Shortcuts, recognized as fundamental in our design, were a
late addition to desktop interfaces. (Although the concept of
aliases already existed in UNIX systems, it first appeared in
the generally well-designed Macintosh interface in System
7, 1991, seven years after its initial release in 1984.)
Leyline locomotion is a new concept in Jazz.

The categorization resulting from the exercise may be
incomplete and much work remains in determining what
factors constrain locomotion and how. Nonetheless, along
with the four sources of constraints, it suggests a framework
that describes both what questions designers need to ask
during the design process and what they should do with the
answers. The similarity of the Windows design to designs
that have evolved over years of use and the apparent utility
of the Jazz design lead us to believe that this is a promising
approach to helping designers produce effective designs
rapidly.

ACKNOWLEDGEMENTS
The author thanks George W. Furnas for unflagging
intellectual support, and Rudy Darken, Barry Peterson and
the MOVES department of the Naval Postgraduate School
for intellectual support and shelter in the sun.

REFERENCES
1. Baber, C. (1997). Beyond the Desktop: Designing and

Using Interaction Devices. San Diego, CA: Academic
Press.

Lodestones and Leylines 10 13-Nov-00

2. Barreau, D., Nardi, B. A. (1995). Finding and
Reminding: File Organization from the Desktop.
SIGCHI Bulletin, Vol.27, No.3 (July).

3. Beard, D. V., Walker, J. Q. II. (1990.) Navigational
Techniques to Improve the Display of Large Two-
Dimensional Spaces. Behaviour & Information
Technology, vol. 9, no. 6, 451-466.

4. Bederson, B. B., Hollan, J. D. (1994). Pad++: A
Zooming Graphical Interface for Exploring Alternate
Interface Physics. Proceedings of ACM UIST’94, New
York, NY: ACM Press, 17-26.

5. Bederson, B. B., McAlister, B. (1999). Jazz: A Java
Zooming Toolkit, CS-TR-4015, UMIACS-TR-99-24,
(May).

6. Foss, C. L. (1989). Tools for Reading and Browsing
Hypertext. Information Processing & Management, 25
(4), 407-418.

7. Furnas, G. W. (1997). Effective View-Navigation.
Human Factors in Computing Systems CHI '97
Conference Proceedings, New York, NY: ACM Press,
367-374.

8. Furnas, G. W. (1995). Effectively View-Navigable
Structures. Paper presented at the 1995 Human
Computer Interaction Consortium Workshop
(HCIC95), Snow Mountain Ranch, Colorado, Feb. 17,
1995. Manuscript available at
http://http2.si.umich.edu/~furnas/POS
TSCRIPTS/EVN<HCIC95.workshop.paper.ps

9. Furnas, G. W., Bederson, B. B. (1995). Space-Scale
Diagrams: Understanding Multiscale Interfaces.
Human Factors in Computing Systems CHI '95
Conference Proceedings, vol. 1, New York, NY: ACM
Press, 234-241.

10. Hill, W. C., Hollan, J. D., Wroblewski, D.,
McCandless, T. (1992). Edit Wear and Read Wear.
ACM Conference on Human Factors in Computing
Systems - CHI '92, p. 3 – 9. New York: ACM.

11. Igarashi, T., Kadobayashi, R., Mase, K., Tanaka, H.
(1998). Path Drawing for 3D Walkthrough.
Proceedings of the 11th Annual ACM Symposium on
User Interface Software and Technology, UIST 98,
173-174.

12. http://www.cs.umd.edu/hcil/jazz

13. Hirtle, S. C., Jonides, J. (1985). Evidence of
Hierarchies in Cognitive Maps. Memory & Cognition,
13(3), 208-271.

14. Jul, S., Furnas, G. W. (1998). Critical Zones in Desert
Fog: Aids to Multiscale Navigation. ACM Symposium
on User Interface Software and Technology, UIST 98,
97-107.

15. Jul, S., Furnas, G. W. (1997). Navigation in Electronic
Worlds. SIGCHI Bulletin, 29, 4 (Oct), 44-49.

16. Mackinlay, J. D., Card, S. K., Robertson, G. G. (1990).
Rapid Controlled Movement Through a Virtual 3D
Workspace. SIGGRAPH ‘90 Conference Proceedings,
in Computer Graphics 24 (4, Aug.), 171-176.

17. Nardi, B. (1996). Studying Context: A Comparison of
Activity Theory, Situated Action Models, and
Distributed Cognition. In Nardi, B. (Ed.) Context and
Consciousness, 69-102.

18. Nardi, B. Anderson, K., Erickson, T. (1995). Filing
and Finding Computer Files. East-West International
Conference on Human-Computer Interaction:
Proceedings of the EWHCI'95, 162-179. Intl. Centre
for Scientific & Technical Information.

19. Parunak, H. V. D. (1989). Hypermedia Topologies and
User Navigation. Hypertext ‘89 Proceedings, ACM,
43-50.

20. Pausch, R., Burnette, T., Brockway, D., Weiblen, M.
E. (1995). Navigation and Locomotion in Virtual
Worlds via Flight into Hand-Held Miniatures. ACM
SIGGRAPH `95 Conference Proceedings, Computer
Graphics, (July).

21. Perlin, K., Fox, D. (1993). An Alternative Approach to
the Computer Interface. Proceedings of the ACM
SIGGRAPH 93 Conference, New York, NY: ACM
Press, 57-64.

22. Perlin, K., Meyer, J. (1999). Nested User Interface
Components. Proceedings of the 12th Annual ACM
Symposium on User Interface Software and
Technology, 11-18.

23. Pezdek, K., Evans, G. W. (1979). Visual and Verbal
Memory for Objects and Their Spatial Locations.
Journal of Experimental Psychology: Human Learning
and Memory, 5(4), 360-373.

24. Russell, D. M., Stefik, M. J., Pirolli, P., Card, S. K.
(1993). Cost Structure of Sensemaking. Conference
Proceedings on Human Factors in Computing Systems
1993. New York, NY: ACM, 269-276.

25. Tolman, E. C. (1948). Cognitive Maps in Rats and
Men. Psychological Review, 55, 189-208. Reprinted in
Downs, R. M., Stea, D. (Eds.) Image and
Environment; Cognitive Mapping and Spatial
Behavior. (1973).

26. Watts, J. (1994). Navigation in the Computer Medium:
A Cognitive Analysis. Proceedings of the Human
Factors and Ergonomics Society 1994, Human Factors
and Ergonomics Society, Inc., Santa Monica, CA,
USA, 310-314.

27. Williamson, A. (1998). Moneypenny: Lessons from the
Messy Desk. Interacting with Computers, v.9 n.3, 241-
267.

