

View-Based Animation
Susanne Jul

Electrical Engineering and Computer Science
University of Michigan

1101 Beal Av.
Ann Arbor MI 48109-2110 USA

sjul@umich.edu

ABSTRACT
We present a technique for animating objects that is based
on the concept of viewpoint rather than on time. Object
properties are computed as a function of the viewpoint. The
viewpoint, in turn, is controlled manually or is programmed
to change as a function of time. This allows objects in a fly-
through or zooming interface to be animated selectively.
The speed of the animation is controlled by the viewer, and
the animation can be run forwards or backwards and can be
stopped, started and stepped by manipulating the view
controls. This technique is not intended to replace time-
based animation, but is rather to be used in special cases or
in conjunction with time-based animation.

KEYWORDS
Computer Animation, View-Based Interaction, Pad++, Fly-
Through Interfaces, Zooming Interfaces.

INTRODUCTION
Fly-through and zooming interfaces bring a
cinematographic concept of “viewpoint” to user interfaces.
Pad++ [1], a zooming interface, extends the utility of this
concept by enabling objects to render differently depending
on the scale (or magnification) of the current viewpoint. In
the present work, we expand this capability by enabling
properties of objects to be computed as functions of the
viewpoint. For example, a text object might rotate about its
center as a function of its distance from the current
viewpoint. This allows us to create view-based animations
wherein moving the viewpoint causes objects to be
animated: The text object spins as the view moves closer.
This technique is not a replacement for time-based
animation, but is useful when only a small number of
objects need special behaviors, and in situations where the
timing of the animation needs to be flexible, such as in live
presentations.

ANIMATION BEHAVIORS
Computer animations are generally achieved through
changing the view onto a scene of objects (moving the
camera) or through changing visual properties of individual
objects (moving or changing the objects). Traditionally,
both types of changes progress with time. In view-based
animation, we link changes in object properties to changes
in the view. Changes to the view, in turn, are controlled by
the user directly or are controlled programmatically as

functions of time. View-based animations, like time-based
animations, “[create] the illusion of motion,”1 but differ in
that the viewer must move for the illusion to become
apparent.

Zooming provides a natural animation behavior: As the
scale of the view is increased or decreased, objects grow
larger or smaller, respectively, in a linear relationship. We
achieve more complex animation effects by providing
behaviors that can be attached to objects. These behaviors
alter the properties of an object—e.g., size, position, or
color—as a function of the viewpoint. The rendering
routines for objects are unaffected, so the behaviors can be
attached to arbitrary objects. Behaviors are modular, so they
can be combined or reused easily.

In authoring, view-based animation is similar to key-frame
animation. However, the intervening “frames” are
determined at run-time, and depend on the path and speed
the viewer takes through the system. Two viewers may take
different paths, possibly simultaneously, and, so, be
exposed to different animations.

EXAMPLE 1: INFORMATION PRESENTATION
We have used view-based animations extensively in
presentations developed in Pad++ for use as conference
talks and/or interactive demonstrations. In either case, the
animations help the viewer find and follow transitions
between different parts of the content.

Figure 1 shows a presentation that employs view-based
animation. The first (left-most) frame shows two topic areas
that may be explored. In frame 2, the viewer has zoomed in
on the word “Photographs.” This text object has an inverse-
zoom behavior attached, so grows smaller as the scale of
the view increases. The actual photographs magnify
normally, creating a crossover effect as the images grow and
the label shrinks. In frame 3, both photographs and the
names of the photographers, magnifying normally, have
become visible. The “Photographs” label has disappeared.
In frame 4, an exaggerated-zoom behavior attached to
photographs and names has been activated. Any name that
is in the center of the view and its associated photographs
magnify at a greater than normal rate. The name has also
been assigned a color-change behavior. The resulting focus
+ context [3] interaction resembles a magic lens [2]

1 From the American Heritage Dictionary definition of “animate.” Copyright © 1999 SJul

approach, but allows different objects to exhibit different
behaviors in the same view. It also allows one object to
exhibit different behaviors in only slightly differing views.
In frame 5, no names are centered, so all objects again
magnify normally.

In authoring presentations, we find that considering how
individual elements can be animated to create supportive
visual transitions helps us pay greater attention to how the
different parts of the presentation are related to each other
logically. In giving or exploring presentations, the viewer
controls the view-changes, so the animations automatically
follow the pace and direction of the viewer.

EXAMPLE 2: INFORMATION VISUALIZATION
Our first example used geometric view coordinates—x, y
position or magnification—as the animation parameter. Our
second example uses an abstract view coordinate to control
the animation. This coordinate is maintained by the display
system, but, unlike geometric view coordinates, is not used
directly in rendering.

Figures 2 and 3 show two interactive visualizations of a data
set with three dimensions, such as might be plotted on a line
graph. Two of the dimensions are linked to screen-position
(Figure 2) or size/color (Figure 3) of object. The third
dimension is linked to the abstract coordinate, which is
controlled manually by the user. In this case, it is controlled
with mouse buttons, but it could easily be linked to a slider
or other widget. These examples could readily be created by
direct encoding. However, by using view-based animation
and an abstract view coordinate, the implementation for the
two examples differ only by the line of code that specifies
the behaviors attached to the objects.

The two examples show the same data values. There are two
data points for the x coordinate. Values for the y coordinate
are computed as a function of the z coordinate (mapped
onto the abstract view coordinate), interpolating between

given data points. The three frames show the resulting plots
for increasing values of the z coordinate. Manipulating the
abstract view coordinate (the only part of the viewpoint
under user control) animates the graphs.

SUMMARY
We have introduced the concept of view-based animation
wherein computable object properties are mapped onto one
or more continuous view dimensions. This allows select
objects to be animated as the viewer moves around them.
We achieve these animation effects through modular
behaviors that are attached to objects. The animation is
under full control of the viewer, so can be paced and
directed interactively. This technique is intended to be used
in special situations, such as zooming interfaces, or in
conjunction with time-based animation.

ACKNOWLEDGEMENTS
My deepest thanks to Professor George W. Furnas for
unflagging intellectual and emotional support as well as a
good deal of plain good advice. This work was supported,
in part, by Irma M. Wyman through the Center for the
Education of Women at the University of Michigan and by
ARPA Grant N66001-94-6039.

REFERENCES
1. Bedersen, B. B., Hollan, J. D. (1994). Pad++: A

Zooming Graphical Interface for Exploring Alternate
Interface Physics. Proceedings of ACM UIST’94, New
York, NY: ACM Press, 17-26.

2. Bier, E. A., Stone, M. C., Pier, K., Buxton, W.,
DeRose, T. D. (1993). Toolglass and Magic Lenses:
The See-Through Interface. Proceedings of the 20th
Annual Conference on Computer Graphics, 73-80

3. Furnas, G. W. (1986). Generalized Fisheye Views.
Human Factors in Computing Systems CHI ‘86
Conference Proceedings, 16-23.

Figure 1 Screenshots of a constant zoom-in sequence. Read left to right.

Figure 2 Mapping x and y to screen-position.

Figure 3 Mapping x to color and y to size.

