CLIMATE CHANGE IMPACTS ON SO-CAL WATER RESOURCES

Thomas P. Zachariah

Loyola Marymount University
Department of Electrical Engineering

Moetasim Ashfaq

Oak Ridge National Laboratory

Dr. Jeremy S. Pal

Loyola Marymount University

Department of Civil Engineering/Environmental Science

Noah Diffenbaugh

Stanford University
Department of Environmental Earth System Science

The Issue

- Temperature/precipitation change over the next century in response to greenhouse gas (GHG) forcing is almost certain
- Changes will impact natural and human systems resulting in many dramatic ecological, economic, and sociological consequences
- We are particularly interested in the effects on highly populated regions. Southern California, which is currently home to 22.4 million people, is a location of major concern.

Climate Model

- To investigate potential impacts of climate change, we analyze output from high resolution nested climate model simulations.
- Two sets of data are analyzed: present climate (1961-1990) & simulated projected climate (2071-2100) under the IPCC SRES A2 GHG emissions scenario.

Image: gfdl.noaa.gov/climate-modeling

A2 in Southern California

- The A2 scenario most notably considers a future of a divided world with independent nations, increasing population, and slow regional economic development.
- The analysis is applied to the watersheds serving as Southern California's primary water supply:
 - Colorado River
 - Owens Valley
 - San Joaquin/Sacramento Rivers
 - Los Angeles

Air Temperature

Rain & Evaporation

Daily average precipitation, evaporation, and runoff of each month for each of the basins in both the RF (1960-1991) and A2 (2071-2100).

Snow & Soil

Difference in average daily snow water equivalence and soil moisture of each month in the basin between RF and A2 time periods.

Runoff

Change in average annual runoff between the RF (1960-1990) and A2 (2070-2100) models. It indicates higher amounts of runoff in all basins. This is supported by significant increases in precipitation and decreases in snowpack.

Annual Averages

	Colorado	River	Δ [A2-RF]	Sacramei REF	nto/San .	Joaquin _{A [A2-RF]}
Avg Air Temperature (°C)	11.9	16.1	4.2	13.5	16.9	3.4
Annual Avg Precipitation (mm/yr)	348	467	119	654	733	79
Annual Avg Evaporation (mm/yr)	279	345	66	350	403	53
Annual Avg Runoff (mm/yr)	51	95	44	273	301	27
Avg Snow Water Equivalence (mm)	0.32	0.10	-0.22	0.47	0.09	-0.38
Avg Soil Moisture (mm)	228	261	33	293	295	3
	Owens Valley			Los Angeles		
	REF	A2	Δ [A2-RF]	REF	A2	Δ [A2-RF]
Avg Air Temperature (°C)	REF 9.0	A2 13.1		REF 17.4	A2 20.7	Δ [A2-RF] 3.2
Avg Air Temperature (°C) Annual Avg Precipitation (mm/yr)			Δ [A2-RF]			
	9.0	13.1	Δ [A2-RF] 4.0	17.4	20.7	3.2
Annual Avg Precipitation (mm/yr)	9.0 300	13.1 383	Δ [A2-RF] 4.0 82	17.4 447	20.7 685	3.2 239
Annual Avg Precipitation (mm/yr) Annual Avg Evaporation (mm/yr)	9.0 300 233 59	13.1 383 273	Δ [A2-RF] 4.0 82 40	17.4 447 233	20.7 685 284	3.2 239 51

Averages of the temperature, precipitation, evaporation, runoff, snowmelt, and soil moisture values of the RF simulation (1960-1990) and A2 simulation (2070-2100).

Impacts

- Analysis of the simulations indicates a warmer, wetter future in all of the watersheds:
- Increases in air temperature
- Increases in precipitation (particularly in early fall)
- Decreases in snowpack
- Increases in earlier runoff
- Increases in soil moisture
- May lead to increased agricultural productivity
- May meet water supply demands of growing population
- However, may also lead to increased incidence of natural disaster, such as flooding.