1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
SWT-2017-18			
4. Title and Subtitle		5. Report Date	
Fuel Sources for Electricity in the Individual Countries of the		November 2017	
World and the Consequent Emissions from Driving Electric Vehicles		6. Performing Organization Code	
		383818	
7. Author(s)		8. Performing Organization Report No.	
Michael Sivak and Brandon Schoettle		SWT-2017-18	
9. Performing Organization Name and Address		10. Work Unit no. (TRAIS)	
The University of Michigan			
Sustainable Worldwide Transportation		11. Contract or Grant No.	
2901 Baxter Road			
Ann Arbor, Michigan 48109-2150 U.S.A.			
12. Sponsoring Agency Name and Address		13. Type of Report and Period	
The University of Michigan		Covered	
Sustainable Worldwide Transportation		14 Sponsoring Agonay Code	
http://www.umich.edu/~umtriswt		14. Sponsoning Agency Code	
15. Supplementary Notes			

Technical Report Documentation Page

16. Abstract

This study was designed to evaluate the relative amounts of greenhouse-gas emissions from driving a battery-electric vehicle (BEV) compared with greenhouse-gas emissions from driving a traditional gasoline-powered vehicle in different countries of the world. The reasons for conducting such a country-by-country comparison are that (1) the indirect emissions from BEVs depend on the mix of fuel sources used to generate electricity, and (2) countries differ widely in their fuel-source mix. (Emissions associated with manufacturing each vehicle type were not considered in this analysis.)

The analysis used two key sets of data: (1) BEV miles-per-gallon-equivalent values based on well-to-wheels emissions of various electricity fuel sources calculated by the Union of Concerned Scientists, and (2) country-specific electricity production by fuel source compiled by the International Energy Agency. Specifically, for each individual country, the calculations derived an equivalent fuel-economy value at which both BEVs and gasoline-powered vehicles produce the same amount of greenhouse-gas emissions. In other words, the calculations derived, for each country, a fuel-economy value that a gasoline-powered vehicle would have to exceed to produce lower emissions than a typical BEV, and vice versa.

The calculated fuel-economy-equivalent values for individual countries vary greatly, depending on the mix of fuels used to generate electricity within each country. On one extreme is Albania (which generates 100% of its electricity from hydroelectric power) with 5,100.0 MPG_{ghg} (0.05 L/100 km); on the other extreme are Botswana and Gibraltar (which generate 100% of their electricity from coal and oil), each with 29.0 MPG_{ghg} (8.1 L/100 km). The corresponding value for the United States is 55.4 MPG_{ghg} (4.2 L/100 km), while the average for the world is 51.5 MPG_{ghg} (4.6 L/100 km). The values for all 143 examined countries are presented in tabular form, as well as in a color-coded world map.

17. Key Words			18. Distribution Statement
Electric vehicles, electricity, emissions, individual countries			Unlimited
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of Pages	22. Price
None	None	19	