Documentation - CAVE Program

(March 5, 2001)

[image: image1.png]

Denis Kalkofen

Email: kalkofen@cs.uni-magdeburg.de
ICQ: 209825 70

Table of Contents

2Foreword

List of classes and used files
3
A few Words about CORBA
9
Functionality
11
Class Description
14
Data structure and Performer’s scene graph
20
Update Mechanism
27
Preparing the Geometry
31
Known bugs
32

Foreword

In this document I’m going to explain the most important functions of the recent implementation. While reading this document you should always look at the source code to clearly understand what I’m talking about. I will not explain every single function, which is implemented. With this documentation I just want to give you an overview to help you getting started. After reading it, together with the comments I made in the source code, you should be able to extend and change the program as much as you want. If you still have any questions regarding the implementation fell free to contact me via email or icq.

With a little change you can theoretically divide the CAVE application into two parts. The first part provides all the basic functions, which a CAVE application needs (all the initialisation stuff, clipping plane settings etc.). It also allows the user to load and to play one or more Biovision Hierarchy Files (.bvh) in the CAVE. In other words, the user is able to load and to play any scenario based on biovision hierarchy files. Theoretically you could build a stand-alone application without any relation to football out of the first part of the recent implementation.

The second part takes this “basic” loader/player and uses it into a football related context by, among other things, adding and controlling a ball in the football game scenario.

The application can handle any number of joints and any number of channels (degrees of freedom for each joint) as well as any rotation order you want to apply. This means, the degree of freedom you’re able to use only depends on the size of the memory your computer runs with. On top of that, the program is flexible enough to use any hierarchy of a figure you can think of and create.

List of classes and used files

VTScene
VTScene.h VTScene.cxx

VCRControl
VCRControl.h VCRControl.cxx

Navigator
Navigator.h Navigator.cxx

Play
Play.h Play.cxx

MotionEngine
MotionEngine.h MotionEngine.cxx

Figure
Figure.h Figure.cxx

ControlPoint
ControlPoint.h ControlPoint.cxx

Joint
Joint.h Joint.cxx

Player
Player.h Player.cxx

Viewpoint
Viewpoint.h Viewpoint.cxx

Move
Move.h Move.cxx

Server
Server.h Server.cxx

CORBA Skeleton/Stub def.
VTInterface.hh VTInterfaceSK.cc

Main.cxx

Class name

 Related files

Other used files

sound.cfg

· Located in the root directory of the application

· Defines the location of each used sound file

· File format: The keyword of a sound file followed by its path

· Annotation: The code is not very nice. If you want to add some new sound files you have to define new keywords in the function int initSound()otherwise the program will ignore the new stuff .

---- 8< ----

…

M_FANFARE
 /home/denis/VT_v1/Sound/final_m_Fanfare.wav
…

---- 8< ----

 viewpoints.cfg

· Located in the root directory of the application

· Defines all the static viewpoints

· It is theoretically possible to add viewpoints while the application is running. You just have to navigate to the position and orientation you want to save and then press the v-key on your keyboard. By pressing the button you call a function that writes your current position and orientation in terms of a three-dimensional vector and a quaternion to the end of the viewpoint.cfg file.

Annotation: It doesn’t work 100% correctly for some reason. So, you always have to check and probably correct the saved viewpoints if you set up some new ones.

· File format: V x-pos. y-pos. z-pos. angle a b c

---- 8< ----

….

V -272 -9 82 90 0 0 –1

….

---- 8< ----

script file

· Describes an entire play

· File format:
1. General Information File

2. Player File

2.1 Header

#VTplay V1.1

2.2 Global Information

I "start time" "duration time" "Team one" "Team two" "startX" "startY"

2.3 Player

Stores a header and then the keyframes for all 22 players

2.3.1 Header

P Team Nr Label "# of Lines"

2.3.2 Keyframes

t x y angle pose moveCorrectionFactor hasBall...

2.4 Ball

Stores the path of the ball

2.4.1 Header

B “number of passes“

2.4.2 Kexframes

plIndex cpIndex

double t
 // Time

double x
 // Position

double y
 // Position towards to touchdown

double angle // 0 means looking in positive y, ccw

char* pose
 // what the guy will do .. name of a .bvh file

int hasBall // whether the guy has the ball or not

plIndex player index -- starting with zero

cpIndex index of the used control point -- starting with zero

· example:

---- 8< ---

#VTplay V1.1

I 0.0 7.0 Michigan Michigan_State 20.0 45.0 0 1

P 0 85 WR 3

0.0 -21.0 42.0 0.0 basic_run 0.6000093288587077 1

3.3127572016460904 -21.0 81.0 334.5366549381283 basic_run_head_r 1.0 0

4.868312757201647 9.0 108.0 315.0 catch_right_n 1.0 1

P 0 10 QB 9

0.0 20.0 30.0 0.0 default 0

1.0 20.0 30.0 0.0 basic_run 1

………

B 2

0 1

1 1

1 2

0 3

…………

---- 8< ----

Every move is going to be repeated after a cycle is done except for those ending with “_n”. These marked moves will be stretched or squeezed to fit in exactly one cycle. (Why?: e.g.; It doesn’t make sense if a player falls down twice - but this will happen if his “falling down motion data” doesn’t fit to the time between the defined control points). If you define a motion ending with a “_n” the application will look for a .bvh file without the suffix because the motion data for a repeatable and a non-repeatable move are the same. While playing a non-repeatable move (“_n”) the application will remember the flag and it will play the motion only one time.

biovision hierarchy(.bvh) files

· Describes the hierarchy of a figure

· Stores the motion for the defined figure

· Example:

---- 8< ----

 HIERARCHY

 ROOT hip

 {

 OFFSET
0.00 0.00 0.00

 CHANNELS 6 Xposition Yposition Zposition

 Xrotation Zrotation Yrotation

 JOINT abdomen

 {

OFFSET
0.000000 0.000000 0.000000

CHANNELS 3 Xrotation Zrotation Yrotation

JOINT chest

{

 ………

}

 ………

 }

 ………

 ……

 }

 MOTION

 Frames: 50

 Frame Time: 0.033333

 -0.013436 41.471615 4.011230 4.570313 -0.878910 ………

 ………

 ---- 8< ----

· File format:

The brackets define the hierarchy structure

1. HIERARCHY -- defines the beginning of the hierarchy part

1.1 ROOT Name {

1.2.1 OFFSET X Y Z – defines the x y and z translation to the parent joint

1.2.2 Channels Number Order – number=number of channels

 – order= used translation and/or rotation order

1.3 Joint Name{ – defines a new joint

…

2. Motion -- defines the beginning of the motion part

2.1 Frames: number of frames – how many frames does the animation have

2.2 Frame Time: value – how long is each frame played

2.3.1 translation and rotation values for the first frame

………

2.3.n ………-- n=number of frames

VTInterface.idl

· Defines the interface between the implemented CORBA server and a CORBA client

· The .idl file will be translated to the CORBA Skeleton on the server side and to the CORBA Stub on the client side

· Example:

---- 8< ----

interface VTInterface

{

 void playFwd();

 void playBwd();

...

}
---- 8< ----

Directories

Sound/ -- stores the sound files

MotionData/ -- stores all the motion data

Bergen/
 -- stores the executables of the sound server

lib/

 -- stores a couple of CORBA related libraries

Plays/
 -- stores all the plays we have

models/
 -- stores all the geometries we have

A few Words about CORBA

CORBA stays for Common Object Request Broker Architecture.

The application implements a CORBA server running in the background once the program is started. The server enables a client to manipulate the program while it’s running. I used the omniORB implementation of the CORBA 2 standard. The ORB was released externally as free software under the GNU Public Licenses in May 1997.

The class VTScene is derived from the CORBA skeleton. This makes an instance of VTScene available for an implemented client. (The client needs to be derived from the CORBA Stub by the way.)

CORBA implements a remote method invocation as follows:

[From “COM and CORBA side by side” by Jason Pritchard]

1. A client invokes a remote method.

2. The client stub creates a message containing information needed for the remote invocation.

3. The client stub sends the message to the server skeleton using the communication bus.

4. The server skeleton receives the message and unpacks it.

5. The server skeleton calls the appropriated server method based on the information provided in the received message.

6. The server skeleton creates a message based on the outputs of the call to the server method (i.e., the return value and out parameters).

7. The server skeleton sends the result message using the communication bus.

8. The client stub receives the result message, unpacks it and returns the result to the client.

How does the client connect to the server?

A string is used to uniquely identify a CORBA object. These strings are called interoperable object references (IOR). The omniORB implementation provides a name server. This name server is used to exchange the IORs between the server and a client. They just need to know the ip address and the port where the name server is running at.

This is the correct way to transfer the IORs between the server and a client. Unfortunately it didn’t work in our special case with a c++ server and a java client. We got it to run with a c++ server and a c++ client as well as with a java server and a java client. But the combination didn’t work for some reason.

In our implementation, the server writes the IOR string to a file called “VTInterface.ior”, and the client has to get this file from the machine on which the server is running. This is not the officially recommended way, but it works very well.

Functionality
In this chapter I would like to give an overview of the functionality of the program.

I’m going to mention the functions one uses to change and configure the application. To make it easy to survey, I’ll only give a selection of the most important functions that create the data structure and those that are in charge of keeping the system running.

The chapter is separated into two parts; the first one shows all the functions that are implemented in the user interface (in other words, all the stuff the user is directly able to change during run time) - the second part lists everything else that is used by the program or that was implemented to verify parts of the application, like the function that visualizes a joint as a sphere.

Directly called Functions
Load/Change

· Load a play script file

· Change the control polygons in a play

· This is used to guarantee a fast update of a play

· will not change anything regarding the scene graph

· only works (and makes sense) if the user has already loaded a script file (play)

· Load the geometry that represents the stadium

Visualization

· Change the transparency value of a selected player

· If the user switches from a translucent player to an opaque one the program will automatically change the transparency values of both players. The new selected player gets the transparency value of the previous selected one and the old player will be displayed totally opaque.

· Display a translucent sphere around the geometry of the ball

· You can switch this sphere on and off

VCR

· Play forward

· Play backward

· Jump to a specified time (pause)

· Set duration time (needed when you load a new play with a new duration time)

· Set the speed of the animation

Navigation

· Walk (speed change of translation or rotation possible)

· Fly

· Animate or jump to a predefined (static) viewpoint

· Animate or jump to a dynamic viewpoint (players viewpoint)

· Navigate with a dynamic viewpoint

- The position and orientation of the viewpoint depends on:

a) the position and orientation of a selected player, or

b) the position and orientation of a predefined joint of a selected player, e.g. the head

Both cases have the possibility to set the orientation to a constant value, e.g. to always point to the goal post

· Select and fly to a player

· Reset the navigation

· Lock the navigation

Sound

· Play a selected sound

· Stop a sound

· It is possible to play more than one file at the same time

Other functionality

Load

· Load the hierarchy from a bvh file -> skeleton

· Load the motions from the bvh files – this is done when the user adds or changes an entire play, or when he just updates the control polygons

· Load a shadow geometry (every player uses the same geometry)

· Load the geometry of a player

· Load the geometry of the ball

· Load the geometry of the sphere around the ball

· Load a sphere to visualize a joint (all the joints are using the same geometry)

· Load the right texture of a given player

· Load all the necessary sound files

· Load all the static viewpoints

Visualisation
· Visualize each joint as a sphere

· The potential to visualize the joint hierarchy and therefore the skeleton of a given figure was very useful to verify and debug the structure as well as the motions without any knowledge of the used geometry.

· Display the figure as wire framed model

· This function has also been used to evaluate the structure

· It was useful to check the relation between the joints and the geometry

· Scale the figure (!! has an influence on the algorithm that tries to correct the sliding!!)

Motion data management

· Include the data of a specific move in the data base

· Return a frame of a move

· Return a specific frame of a move

· Return a frame of a move that is computed by the motion engine to correct the sliding problem. The frame number depends on the animation time and a given correction factor

Class Description

VTScene

This class provides an interface between the current play, the navigator and the controller. It allows these objects to interact with each other (e.g. the current play updates all the players depending on the current time. An object of the type VCRControl is in charge of computing the current animation time).

An instance of VTScene is bound to the implemented CORBA server. This allows a client program (in our case the ched program) to call functions of an object of this class and enables it to manipulate the objects observed by the class. The derived class VTScene (from the CORBA skeleton class sk_VTInterface) accomplishes the binding. Tthe implementation of all the virtual functions in the parent class is required; they are defined in the idl interface file.

The functions are in particular:

playFwd()

Calls the function playForward() on the object _vcrControl

playBwd()
Calls the function playBackward() on the object _vcrControl

SetSpeedFactor(double value)
Calls the function setSpeedFactor(value) on the object _vcrControl

SetCurrentTime(double value)
Calls the function setCurrentTime(value) on the object _vcrControl

fly(long value)
Calls the function setlockZ(!value) on the object basicNavigator

LockNavigation(long value)
Calls the function

setLockNavigation (value) on the object basicNavigator

ResetNavigation()

Calls the function

resetNavigation (value) on the object basicNavigator

setPlayersViewpointMode(long value)
Calls the function

setVTPlayersViewpointMode (value) on VTScene.

Accepted values:

1- viewpoint is bound to a player

2- viewpoint is bound to a player but the orientation is always equal 180 deg. = goal post

3- viewpoint is bound to a pre-selected joint of a figure

SelectPlayer(long value)
Calls the function

selectVTPlayer(value) on VTScene.

setTransparencyValue(double value)
Calls the function

setPlayersTransperencyValue(value) on VTScene.

SelectViewpoint(long value)
Calls the function

Select_Viewpoint(value) on VTScene.

ShowBallSphere(long value)
Sets the showBallSphere_Flag variable to the specified value

ChangePlay(const char* value)
The var. value includes an entire script file … this string is stored in the file “helpFile_Load” …the file will be loaded in the next update routine

updateControlPolygons(const char* value)
This function only updates the control points of a loaded play … it makes a quick update possible

ChangeStadium(const char* value)
Changes the stadium geometry …value is the name of the new geometry

startSound(long soundNumber)
Starts a pre-loaded sound file on the sound server

stopSound(long soundNumber)
Stops a started sound file on the sound server

VCRControl

The class VCRControl returns the animation time depending on the current system time and the defined animation mode. The implemented modes are similar to an actual vcr control. The class provides functions to play the animation forward as well as backward. The velocity of the animation is adjustable, and it is possible to jump to a user-defined position in the animation.

Navigator

This class provides functions to translate and rotate the loaded geometry.

The “Navigator” is derived from the Performer class “pfDCS”. An instance of this class builds the root node in the created performer scene graph. Every single manipulation of the position or orientation of this node has an influence on all the children (e.g. the stadium geometry, the players, …). This makes it possible to walk or fly through the virtual world.

The function app(pfTraverser *trav) is automatically called in every performer traverse call. In other words, the function is called every time a frame is rendered. The function checks the status of the CAVE-Wand and updates the rotation as well as the translation depending on the received values. A user-given speed-value, scales the values received from the CAVE-Wand. This makes it possible to adjust the speed of the rotation or translation. The functions setTransSpeed(float s) and setRotSpeed(float s) are implemented to set these speed values.

The following functions are implemented to allow the user to switch between a walk and a fly mode, to lock the navigation or to reset the navigation.

· setlockZ(int value) ….

· False=fly mode

· True=walk mode

· resetNavigation()

· setLockNavigation(int v) …. v=1 locks the navigation

Last but not least the class provides functions (with the aid of the class “Viewpoint”) for animation from the current position to a specified viewpoint. The functions implemented to do this are:

· initializeViewpointAnimation(Viewpoint *animationEndpoint) … sets the start and end viewpoint for the animation …the start viewpoint depends on the current position

· setViewpoint(Viewpoint *vp) … jumps to a viewpoint specified by vp … this function is called in each frame of the viewpoint animation

Viewpoint

A Viewpoint is defined by its position and orientation. The orientation is represented by a quaternion and the position by a three-dimensional vector. The function setMatrix(const pfMatrix& m) changes these attributes on an created instance.

The class also provides functions to interpolate between two viewpoints as well as functions to compute the distance between two viewpoints.

· float distance(const Viewpoint& vp) – returns the distance between vp and itself

· void slerp(float t, const Viewpoint& vp1, const Viewpoint& vp2) – the result of an interpolation between vp1 and vp2 changes the position and orientation of the used instance of “Viewpoint”… the variable “t” is a value between 0 and 1 with influence on the interpolation

Play

The class “Play” is responsible for all the global information in a specific play situation.

This includes the start time, the duration time, the ball path and a list of all the players. Furthermore, “Play” creates and stores an instance of the class “MotionEngine” to provide all the players with only one global engine. This is necessary to save every single move in a play just once, thereby avoiding redundancy.

The different players are represented by an instance of the class “Player” and the path of the ball consists of a list of instances of “ControlPoint”.

Figure

The instances of “Figure” store a skeleton and a path. “Figure” also knows about a motion engine where it can register all its moves. The skeleton is made up of a hierarchical list of instances of the class “Joint”. The class is flexible enough to handle any number of joints with any rotation order. In other words, it is able to manage any degree of freedom.

The path of the figure is given by a list of instances of the class “ControlPoint”. The motion engine is set by the play, which creates the figures. It is possible to set one specific joint in the hierarchy to be the “viewpoint joint”. A function is implemented to return the position and orientation of a transferred joint in “figure coordinates” (with respect to the root joint). The result will be represented in a matrix. If you want to know the global position and orientation of the “viewpoint joint”, you just have to multiply the resulting matrix with the matrix that represents the global position and orientation of a figure

Player

The class “Player” is derived from the class “Figure”. It extends “Figure” by the attributes of a football player.

The additional attributes are:

· The team the player plays for

· His number

· The joint where the ball is going to be added.

Once you’ve defined the team and the number of a player you can call the function void loadNumberTexture(). This function loads and adds a texture to the player depending on the first and second mentioned attributes. The texture needs to be placed in the path models/”team”/tex_maps/. The name of the texture has to be the name of the team followed by the number (e.g. Michigan86.rgb must to be located in models/Michigan/tex_maps/).

Joint

The class “Joint” stores a three-dimensional position, the number of channels (degrees of freedom), the operation order and a list of its children. The position is relative to its parent joint in the hierarchy of the figure.

The following is an extract from a biovision hierarchy file we actually used, which shows a joint definition.

---- 8< ----

JOINT chest

{

 OFFSET
-0.034091 8.837934 -0.882718

 CHANNELS 3 Xrotation Zrotation Yrotation

}

---- 8< ----

Control Point

A control point has the following attributes.

· x, y and z position -- z is always set to zero

· angle – defines the orientation in the x-y plane

· move

· move correction factor

· start time

· offset to the start time

Motion Engine

The class „MotionEngine“ is in charge of saving and observing every single move in the application. It stores all the moves in a map depending on the name of the move. The function exist_in_DataBase(char* _move_name) searches the map for the transferred name of the move. This makes it possible to check if a move already exists in the database. To add a move to the database, you need to call the function addMove(char*, int _dof). This function checks - with the aid of the previously mentioned function - whether the move already exists. The function will only add a move if it doesn’t exist in its database so that every move will be stored only once.

The class also provides functions to get a specific frame out of a move.

Move

A move is a list of frames whereby each frame consists of a list of values that describe the changes of a figure. The class “Move” stores these frames plus some additional information about the move like the frame time and the number of frames.

Data structure and Performer’s scene graph

Once the program is started, the function main(int argc,char **argv) [located in main.cxx] is called. The function will initialize and configure all the necessary CAVE and Performer routines (e.g. memory will be allocated, the clipping planes set, the functions to initialize the channels will be called etc). Just take a look at the function and you’ll see the stuff that’s being initialized. After this is done the function creates the sound server and initSound() will be called. The sound server is an object of the type “bergenServer”(You need to start and stop the server environment manually via the executable snerd located in the directory “Bergen/”). The function initSound() reads the file sound.cfg and creates an object of the type “bergenSample” for every sound file. The function binds all the created objects to the sound server, and it will tell the crowd_sound to start to play. Now, the CORBA server and an object of the type “VTScene” will be created and linked. When this is done, the CORBA server gets the message to start all the services and we’re coming to the point where we enter a “while” loop that keeps the application running until the user presses the escape key. A few functions are going to be called to stop the CORBA server and to explicitly exit the CAVE and Performer environments after the user ends the “while” loop. That is, in a nutshell, what the main function does - except for one other function call. Before the program enters the “while” loop, a function to create the scene will be called (createScene(argv)). OK, let’s look at this function. An object of the type “pfScene” will be created in the first line (“pfScene” is a Performer class). This object becomes our root node in the performer scene graph, which we want to create. After creating the node we apply a traversal function to it (sceneTrav(pfTraverser…)). Performer offers a couple of operations that can be applied to the run-time-database defined by the scene graph. These operations are known as traversals because they traverse the database hierarchy. The four most important supported traversals are the application, the cull, the draw and last but not least the intersection operations. The application traversal is the first that occurs during the processing of the scene graph in preparation of rendering a frame. It updates the active elements in the scene graph for the next frame. This includes processing active nodes and invoking user supplied callbacks. It’s initiated by calling pfAppFrame(). If pfAppFrame() is not explicitly called, the traversal is automatically invoked by calling pfSync() or pfFrame(). If you look at the “while” loop which I mentioned before, you’ll see that pfFrame() is called in every pass -which implies that our defined traversal function is going to be called with every rendered frame. The traversal function that we’ve applied to the root node of our scene graph will call a function (updateScene())on our “VTScene” object. Congratulations! Now we got the metaphorical foot in the door of the update mechanism! I’ll explain more about the whole update thing in the next chapter

So, where did we stop?

We created the root node for our scene graph and we added a traversal function to it. The next couple of lines are needed to configure some stuff regarding the scene, plus they will add a few light sources to it as well.

Let’s summarise what we have got so far:

We started the sound server environment externally and we created the necessary objects for it. We also put all the sound data on it and then we started everything. We configured and initialised the necessary CAVE and Performer routines. We built the root node for our scene graph. We created the CORBA server as well as an object of the type “VTScene”. By creating this “VTScene” object we automatically built objects of the type “VCRControl”, “Navigator” and a vector of the Type “Viewpoint”. The class “Navigator” is derived from the Performer class “pfDCS” (Dynamic Coordinate System). This makes it possible to add an instance of “Navigator” to our scene graph. This is done by calling vtScene->addTo_pfScene(scene).
“pfDCS” implements the function app(pfTraverser *) , which is going to be called during Performer’s application stage. The class “Navigator” overloads this function so that we can manipulate the graph while the application is running.

Now we call vtScene->configVTScene()to fill the array with the predefined viewpoints. After this is done, we load and add the geometry that represents the stadium to our scene by calling vtScene->loadStadium("models/stadium/demo.iv"). Since we want to navigate in our stadium we have to add it as a child of the navigation object that we created before. If we assume now we’ve started our application without transferring a play script file, that the last call (vtScene->loadPlay(argv[1])) will be ignored, we are done so far.

The following illustration shows the scene graph and the data structure we have created by now. It is important to realize the navigation object in the scene graph and the navigation object in our data structure are identical.

Fig. 1: Data Structure and Performer Scene Graph (Part 1)

Now we want to load a play script file to create a play scenario.

The class “VTScene” implements the function changePlay(const char* value). The CORBA server invokes this function after it receives an equivalent message from the CORBA client. (Always remember: the CORBA client is part of the ched program, which creates the play script files.) The received message contains the whole play script as a string. The function changePlay(const char* value) stores the received string in a file before it sets a flag which tells the application to call loadPlay(char* aPlayScriptFile) during performer’s application stage. The name of the newly created file builds the argument in the function call. Since the result of Performer’s application stage is the basis for the entire rendering process of a frame, we are not allowed to change the scene outside of this stage. The CORBA server runs in the background and doesn’t know anything about performer’s run-time environment so that we have to protect performer manually. That’s why we can’t call loadPlay(..) directly.

So, lets have a look at VTScene::loadPlay(…).

The function creates an object of the type “Play” in the first line. This object then automatically creates an object of the type “MotionEngine“ as well as two vectors of the types “Player” and “ControlPoint”. The next call (aPlay->loadPlay(aPlayScriptFile)) transfers the play script to the created object of the type “Play”. If loadPlay (…) did successfully load the play script, an object of the type “pfDCS” has been created which is serving as the parent node for everything else in the play. The function now adds this node to our scene graph as a child of the navigation node.

Play::loadPlay(…) finally opens the script file. First of all, it will check the file header. If everything is correct, the function starts to read the file.

A play script file consists of three major sections. The first part includes global information about the play and is defined by the keyword ‘I’. The second part is a list of all the players wherein each player is defined by the keyword ‘P’. The last part defines the ball path and is identified by the keyword ‘B’. The ball path consists of objects of the type “ControlPoint”. The function will look for these keywords to load the right stuff. Just look at the function and you’ll see what is going to be loaded. I want to discuss here only the middle section, the players.

If our function finds the keyword for a player, it will first create an object of the type “Player” which it adds to the previous mentioned vector. The next few steps are done for every player we’ll find in the script file.

The function configures the created player object by adding the geometry and the textures, setting the correct scale factor, creating the skeleton and so on. I’m only going to point out four of the called functions.

The first function I want to mention tells the player which motion engine he has to use. This is done by calling playerArray.back()->set_MotionEngine(mEngine), where “mEngine” defines the motion engine. Remember the play object has created the motion engine. Every player should “know” the same engine!

By creating an object of the type “Player” we automatically created (among other things) an object of the type “pfDCS “ that represents our player in the scene graph. The load-function will add this node as a child of the play node to the scene graph (playerArray.back()->addFigureToScene(playDCS)).

The last two calls I want to refer to are the following:

· (playerArray.back()->readSkeleton("MotionData/initial.bvh"))

· (playerArray.back()->readCPolygon(playFile)).

The first one creates the player’s skeleton, and the second reads the control polygon from the script file. The control polygon consists again of objects of the type “ControlPoint”. Have a look at Figure::readCPolygon(..) and you’ll find in the last line the call registerMoves(). This call adds all the moves of this specific player to the motion database, which is part of the motion engine object.

We’re almost done by now. We should just examine more closely how the skeleton is going to be created. As I mentioned before, the function Figure::readSkeleton(..) is in charge of doing this job. So, lets have a look at the file Figure.cxx .

The skeleton is based on the hierarchy part of a .bvh file and consists of a list of objects of the type “Joint”. Since all the players in our application have the same structure, they are all using the same hierarchy file ("MotionData/initial.bvh"). If you want to create different types of figures you just need to load the right .bvh files. The application is flexible enough to handle whatever you create and any combinations you can think of.

The function readSkeleton() creates an object of the type “Joint” which is going to be the root object in our hierarchy. Now, we call read_hierarchy(bv_hierarchy_File) on the freshly created joint object with our .bvh file as the argument. The object of the type “Joint” contains a vector of “Joint” as well as an object of the type “pfDCS” that is used to represent a joint in the scene graph. The function now creates - depending on the hierarchy file - objects of the type “Joint” for all its children in the structure and adds those to its vector. The “pfDSC” nodes of every joint in the list are added to the joints “pfDCS”. After this is done, the function calls itself for each joint. This recursive function call will create the hierarchy we want.

That’s it. Lets summarise with the aid of an illustration what we’ve done.

Fig. 2: Performer Scene Graph (Part 2)

Fig. 3: Data Structure (Part 2)

Update Mechanism

As we’ve seen in the previous chapter, the root node of the scene graph calls the function sceneTrav(…) during Performer’s application stage. This function call starts the update mechanism that I’m going to explain here. But before we start, I need to mention that I found a little bug in the structure while I looked at the function. The second part tells the sound server what to do if the user wants to start or stop some sound data. Since the sound server doesn’t change anything on the scene graph the CORBA server should directly call the necessary functions on the sound server instead of doing it during the application stage. This steals processing time from Performer and makes the rendering process somewhat slower. It works, but if you get the chance to correct it, please go ahead. You just need to create the sound server as a member of “VTScene” so you can transmit everything directly to the sound server.

Ok, now we can start. The first part of the function calls vtScene->updateScene(). Let’s jump right away to this function. VTScene::updateScene() first checks whether the user has released an action to change the structure during two application stages. Let’s assume the user didn’t want to change anything on our hierarchy. Just look at the previous chapter if you’re interested in the stuff that happens there.

The next calls require the existence of a play in our structure, otherwise the function will return and the update is done. So, lets also assume we’ve loaded a script file that includes a play.

The function will first determine the system time. The “VCRControl” will compute the animation time depending on its own status and the system time it computed before. Have a look at “VCRControl.cxx” to see how this is done. By the way: the user is able to change the status of our “vcr” at any point. The following call tells the “Play” to update itself with the knowledge of the animation time. We’ll look at this in a moment. Let’s first finish the update function of “VTScene”. The last part will check whether the user wants to add himself to the position of a player or not. If so, the function will compute the correct viewpoint that represents the user’s new position in the world. This is done by a few matrix multiplications. It’s easier to understand if you just look at it, rather than reading what I wrote.

After the correct viewpoint is determined, the function tells the “Navigator” to translate and rotate the world until the viewpoint is reached.

Let’s go to Play:update(animationTime) now. This function again tells every “Player” in its list to update itself by calling playerArray[i]->update(animTime) where [i] indicates the index of the current player. After a player has finished it’s updated routine, the function checks whether the player has the ball or not (every player always knows if he carries the ball. This is necessary to keep track of the ball). If the updated player has the ball at this point in time the function will determine the last owner and, if necessary, it will switch the ball. If this is done for all the players and the function couldn’t find a player who is carrying the ball it will start to move the ball depending on its ball array. I hope this is enough to understand how the ball is going to be updated. I would like to continue with Figure::update(animationTime) now. In the first part, the function computes the current control point depending on the transferred animation time. This is done via an interpolation between two control points out of its control polygon. The function which does the interpolation job is part of “Figure”. This is, at least in my opinion, the next little bug. To have a nice and easily readable data structure the function should be a member of “ControlPoint”, so that a control point has the knowledge to interpolate itself. If we had created something else that needs to interpolate between two control points we’d have had to implement the whole stuff again - which wouldn’t be the case if we had implemented the function as a member of “ControlPoint”. But anyway, it works, and it doesn’t take any system time. I just wanted to mention it so that you might be able to change it in a minute of your spare time (.

Ok, so where did we stop? We’ve figured out the current control point, which includes the current position, the orientation and the name of the current move. We’ll now call two functions to update the position and orientation of the “pfDCS” node that represents the player in our scene graph. After this is done, we’ll ask the motion engine about the current frame data depending on the current move that is given by the current control point. In the last line, the function updateSkeleton(currentFrame) is going to be called. This call will update the skeleton depending on the frame data we got. But let’s first have a look at the motion engine to understand how the frame data is computed. We need to differentiate between repeatable and non-repeatable moves. The function MotionEngine::getFrame(…) will return a frame depending on the kind and the name of the move, a given correction factor, the time difference between the previous and the following control point (tcp_diff) and the time difference between the current animation time and the time of the previous control point (tanim). If the move is defined to be repeatable the function tries to correct the sliding problem. The right foot of the figure we use is defined to be in front in the first and in the last frame. This rule is valid for all the motion files we created. This makes it a lot easier to chain two motions together.

 tcurrent
 cpn cpn+1
t0
 tn tn+1
tcp_diff = tn+1 - tn

tanim = tcurrent - tn
Fig.4: Control polygon

The correction factor is computed during the translation process in the Ched program. The correction factor only applies to run moves. Since we only created a couple of different run moves, only those will have a value unequal 1. The Ched program computes the distance (d) between the control points n and n+1, the time tcpdiff and velocity between these two control points (vcorrect=d\tcpdiff). Ched knows the correct speeds values (vmove) for ten different run moves. The program will now change the run move to the one with the closest difference in its velocity value that it can find. Finally the correction factor is given by vmove\vcorrect.
If the function computes the current frame for a non repeatable move, it will not need the correction factor. The current frame number is going to be computed as follows:

FrameTime = tcp_diff \ number_of_frames_in_the_move

CurrentFrameNumber = trunc(tanim /FrameTime) modulo number_of_frames_in_the_move

The current frame of a repeatable move is going to be computed with the following equations:

NumberOfRepeats = tcp_diff / (frameTime * numberOfFrames);

NumberOfRepeats_rounded = trunc ((NumberOfRepeats * coorectionFactor) + 0.5);

FrameTime = tcp_diff / (NumberOfRepeats_rounded * numberOfFrames);

CurrentFrameNumber = trunc(tanim /FrameTime) modulo number_of_frames_in_the_move

We’re now able to update the figure with the computed frame.

The function updateSkeleton(…) tells the root joint to update itself. It transfers the frame data as an array of float values and the start index that defines where its specific data begins on the array. An object of “Joint” knows the number of its channels to be able to find with the knowledge of the start index all its data. All the angles and translation values are now going to be applied in the correct order to the “pfDCS” node, which represents the joint in the scene graph. The „Joint“ object also knows the operation order.

If you look at the function you’ll see I did a little hack to guarantee the correct order of execution of the rotation values. You can rotate a “pfDCS” node by calling the function rot(x,y,z). But you don’t have any influence on the order in which the values are going to be applied to the node. Something like a combination of rot(x,0,0), rot(0,y,0), rot(0,0,z) doesn’t work either, because performer will not execute the commands right away, so that only the last call will have an influence on the node. It is possible to compute and apply a rotation matrix that includes all the three rotations in the right order. I implemented this but for some reason it didn’t work out like I intended … (if you want, I can try to locate one of the older versions where this is still implemented). So, to get a fast (and working) result, I separated the node into three different nodes where each of them represents one of the three axes. Of course this approach needs a lot more memory, but now I’m able to apply all the rotation values in the correct order. If you want to change it you could also try to transform the rotation values in a quaternion, which you can apply to just one “pfDCS” node. Let me know if you find a better working solution than the one I implemented. Ok, lets go on with the update routine. The last part will tell all the children (which are also objects of the type “Joint”) to update them with the same frame data array. Only the start index is moved to the right position, which is the old start index plus the number of channels. If this is done for every single joint the start index should be identical with the length of the data array and we’ve reached the end of the update routine.

Preparing the Geometry

If you export the geometry piece by piece out of Poser, you get everything related to a world coordinate system. To apply the pieces to the scene graph we need to change this into coordinates with respect to each joint. The program “combine” located in Combine/ is in charge of computing the right offset and translating the geometry into the right coordinates. If you look in the directory you’ll find two different versions. One of them translates the geometry and the other one allows you to directly define (via a command line parameter) the scale of the geometry if needed.

Just copy the executable together with the hierarchy file in the directory where your geometry files are located in and start it. It does everything else automatically so that you’re able to work with the geometry.

Known bugs

The only real bug I know of is a routine involved with the update of a play. If the user wants to change an entire play, the application first tries to delete the whole geometry as well as the play related data before it loads the new play. The algorithm to delete the geometry doesn’t work correctly so that some stuff will always stay in the memory. After a couple of delete and load calls the memory gets filled up and the system crashes because of a memory overflow. I looked at a lot of messages without any success in the performer news group regarding the correct deleting of geometry in Performer. Everybody did it in a different way but none of them worked in my case. Even the man pages couldn’t offer a solution. There were two major suggestions, which I tried. The first one deletes a part of the scene graph by just deleting a node and everything else below this node should – theoretically - get deleted, too. So I implemented this and checked the algorithm by loading and deleting the same play script file while I watched the memory. Unfortunately, the memory increased constantly. Hmm…next try. The second approach tries to delete a part of the scene graph by going thru it recursively. It deletes every node manually. Performer stores the geometry in so-called “pfGeode”(geometry nodes) and “pfGeoSet” (geometry sets) and shares the geometry between its geometry nodes to provide an efficient way of saving it. This makes it so complicated to delete parts of the loaded geometry.

All the other “bugs” I want to mention are just suggestions to improve the performance of the implemented system.

As you might remember I already pointed out two them in the design of the system.

The first one is related to the interpolation between two control points. The function should be implemented in the class “ControlPoint” instead of the class “Player”.

The second bug starts and stops the sound during Performer’s application stage. But the sound doesn’t have any influence on the scene graph and should get updated directly when the user calls the corresponding functions. The current position of the update calls will slow down the rendering process a bit.

The next little bug I would like to point is situated in the routines which load the geometry of a player. Once the system has loaded the geometry it shouldn’t do so again for another player in the same team (because they are the same). The current implementation doesn’t check this and it will load the geometry once for every player.

The last mistake I found changes the transparency value of the sphere around the ball. The geometry is set up as being translucent. If the ball gets added to a player during the play scenario the sphere becomes a part of the players hierarchy. If the user now selects the player with the ball and if he changes its transparency value the sphere around the ball gets changed, too. If you want to correct it, you just need to detach the ball before you change the players transparency value and attach it again after the function is done. I already implemented two functions to detach and attach the ball to a player.

Server

Client

CORBA Skeleton

CORBA Stub

Communication Bus

(CORBA Runtime System)

Navigator (pfDCS)

Performer Scene Graph

VTScene::updateScene(...);

Light

Light

Light

Scene

app(pfTrav....)

Stadium

(pfDCS)

Geometry

Sound Server

Sound Data 2

Sound Data 1

.......

CORBA CLIENT

Ched Implementation

CORBA SERVER

VTScene

Navigator

app(pfTraverser..)

......

......

VCR Control

......

......

......

pfDCS *stadium

.......

updateScene();

......

......

Viewpoint array

Viewpoint

......

......

Joint

(pfDCS)

J

J

J

J

J

J

J

J

J

J

J

J

Navigator (pfDCS)

Play

(pfDCS)

Stadium

(pfDCS)

Player

(pfDCS)

Player

(pfDCS)

Player

(pfDCS)

Joint

(pfDCS)

J

J

J

J

J

J

J

J

J

J

J

J

Joint

(pfDCS)

J

J

J

J

J

J

J

J

J

J

J

J

Geometry

Geometry

Geometry

Geometry

Geometry

VTScene

...

...

Play *aPlay

...

Play

...

pfDCS* playDCS

...

MotionEngine *mEngine

...

... Player Array

... Ball Array

Player

...

pfDCS* figureDCS

...

...

Joint *skeleton

...

... Control Polygon

Joint

...

pfDCS* jointDCS

...

... Children List

ControlPoint

......

......

MotionEngine

......

...

...

Motion Database

Name

Data

...

...

...

...

...

...

Move

PAGE
1

