VRML Translator: Program Chart2VRML

by Lars Bjorn Jensen

June 7, 2000

(revised October 18, 2001)
Content:

Getting to VRML
a chart that shows the steps that were taken to get the animation and geometry

data into a form that would work in VRML

Chart2VRML.exe

explains how the Chart2VRML program works and how the VRML file is

structured
Chart2VRML Tools

explains some of the tools that were created to convert data so it would be useable

in VRML

Chart2VRML At A Glance
The Chart2VRML program reads in a plain text Chart Play file and outputs an interactive 3-D VRML world for the football play defined by the Chart Play file. There are 2 nested levels of interpolation for each player. The outer level is used to interpolate the player along the plane of the field and rotate the player according to the player’s orientation (these movements are defined by the data in the chart play file). The inner level is used to animate the player. Each player requires its own personalized hierarchical geometry structure and animation interpolators. A single time sensor controls everything so that the play can easily be paused and restarted, among other things. The outputted VRML file includes viewpoints that allow you to follow particular players, and a control panel that allows you to pause the play, play it in slow motion and more.

· Features of the Outputted VRML File

· As with all VRML files, the user can zoom in and “walk” around the world

· The user can click on a player to have the viewpoint follow that player through the play

· The user can view the play through the eyes of any of the players

· The user can pause the play, play it in slow motion, play it in reverse, and reset it back to the beginning

· Color coded paths can be drawn on the field to show the path each player will travel

Chart2VRML In Detail

To minimize the amount of “Print” statements in Chart2VRML.exe, template files are used whenever possible. Humanoid and Animation templates are derived from Poser4 data and contain special variables in them that can be replaced by Chart2VRML.exe to make them unique to a specific player. It is necessary that each player’s geometry and interpolators be uniquely named so they can all act independently from one another.

Chart2VRML.exe starts by outputting the statements that need to be in the beginning of the VRML file, such as standard geometry (i.e. the field), default viewpoints, lights and the control panel.

Next, the parser reads in the data for each individual player and outputs the necessary humanoid geometry hierarchy and animations for that player. If player has a ball at any point during the play, the player is outputted with a ball switch node and a script that switches the ball to be visible when the player should be in possession of the ball. The time sensor that turns on the ball for the player who last has possession of it is left running until time is reset so that the ball does not disappear from the player when the play stops.

Position and orientation interpolators are created from the key frame coordinates and rotations defined by the chart play file. These interpolators are routed to the transform that has the player humanoid imbedded into it and are responsible for the player’s movement and rotation on the field plane.

Next, an animation interpolator is outputted for each segment of the player’s geometry. The player’s animation is formed by combining all of the animations the player goes through during the play into one interpolator per geometry segment. Some animations loop while others do not, this is taken into consideration when the interpolator is being defined. If a looping animation is played for longer that the animation is defined for, it is repeated. The key frames for the player are analyzed to see when the animations change so that animations that remain the same through several key frames are not restarted for each key frame (this would cause jerkiness).

All of a players animation interpolators are routed to the player’s corresponding geometry segment and the global time sensor is routed to the players interpolator so that all animation is driven by one time sensor.

As each player is read from the play file, all of the above is executed by Chart2VRML.exe. Once all of the players have been processed, the final thing that must be dealt with is the ball.

The ball is defined similar to a player for times when it is in flight, key frames are specified that tell where the ball should be at certain points in the play. There is a single ball switch node that gets turned on and interpolated between players when possession is changed (when the ball is in possession by a player, the player will have a ball switch node that is turned on, this allows the ball to move with the players hand). The vertical height of the ball arc is derived from the flight time (longer flight = higher arc).

The in-flight ball interpolator and script are driven by the global time sensor just as the players are. This makes it easy to allow the play to be paused, played in slow motion, or in reverse.
Chart2VRML Tools

bvh2vrml

The bvh2vrml program is written in C++ and converts an animation defined by a BVH file exported from Poser4 to an animation template to be used by the Chart2VRML program. The BVH file contains Euler rotation key frames for each joint. The bvh2vrml program converts these Euler rotation key frames to axis angle based interpolators for use in VRML via quaternions.

bvh_parser

The bvh_parser program was written to fix various problems with the BVH files exported from Poser4. It included functions to fix the joint coordinates and hierarchy, and functions to extract and inline the geometry.

AnimComp

The AnimComp.exe program compresses animations by combining frames that are identical or within a certain tolerance. The propose of this program is to remove redundancy from the animations to make them smaller and, in effect, decrease the size of the VRML file outputted by the Chart2VRML program.

JointRemover

The purpose of the joint remover program was to remove insignificant joints from the players so that less interpolators were needed. This was expected to increase the performance of the VRML file created by the Chart2VRML program. However, the performance gains were negligible.

Create Animation Template

VRML Play File

A player template consists of the geometry hierarchy and joint coordinates where each transform name has a special variable that can later be replaced by the parser with the players unique ID.

An animation template consists of VRML interpolators representing the animation, and ROUTEs that route the interpolators to the correct player body part. All of the interpolator names have a special variable that can later be replaced by the parser with the players unique ID.

BVH File

Used to derive player animations and joint locations

Problems:

1. BVH files use Euler’s angles to define orientations (VRML uses Axis Angles).

2. BVH files use unknown units for translation.

3. Identical frames are often repeated (especially in static animations) making for unnecessarily large interpolators in VRML.

4. The BVH file assumes the hip joint is at 0,0,0 in the world and therefore translates it up to get the feet above ground. The H-anim VRML file places the player’s feet on the ground by default.

Solutions:

1. Convert from Euler to Axis angles and create a new BVH file (NBVH) (wrote a C++ program to do this).

2. Figure out a conversion factor for BVH units to meters by comparing joint coordinates in Poser (meters) to the joint coordinates in the BVH file. (Sub-Problem: Poser only displays 3 digits of accuracy and that leads to an error factor of +/- 0.5cm).

3. Delete identical frames and frames that fall below a certain tolerance of movement (ex. 3 degrees and 0.5 inches) from the VRML interpolators (wrote a VB program to do this).

4. Subtract the hip joint height from the vertical translations in the animations.

Create Player Template

H-anim File

Used to derive player hierarchy and geometry

Problems:

1. Ankle Joints are set as children of the hip (should be children of the knees).

2. Joints all set to 0,0,0.

3. Geometry makes the file huge (~350KB).

4. Player is ~0.69 units tall

Solutions:

1. Fix hierarchy by cutting and pasting the ankles to the right spot (wrote a C++ program to do this).

2. Fix joints by calculating the correct joint coordinates from a bvh file and writing them to the H-anim file (wrote a C++ program to do this).

3. Extract and then inline the geometry (wrote a C++ program to do this).

4. Scale the player in VRML

Poser4

Export to H-anim file

Export to BVH file

Getting to VRML

Chart Play Files

Chart2VRML.exe

Chart2VRML.exe

Player Templates

Animation Templates

2
2

