University of Michigan

Virtual Reality Laboratory

Author: Mira Dontcheva


Artificial Intelligence 

Algorithm

Initial Idea:


The idea of putting artificial intelligence behind the application came about after we started creating plays. We found that using the chart program was becoming very tedious. The user had to add all twenty-two players, their paths, and their animations and the process could take a whole day to complete. This time lapse made our software virtually unusable to a person such as a football coach, who wants to draw a game in a few minutes and show it to his players immediately.


We wanted to make the drawing of charts as fast as possible, which meant minimizing the amount of information that the coach had to enter. This meant that all the coach would have to do is to put his players on the field and define a path for them. He wouldn’t have to worry about timing or what these players are actually doing. Their actions should be determined by their positions. In football every man knows exactly what he has to do before the play ever starts. Also, when the coach draws up the charts for his football players he never tells them exactly what motion they are supposed to do. We wanted to make our chart program as close to what the coach already knows.

Design:


The artificial intelligence algorithm we used is described in the artificial intelligence community as using reactive behavior to control a character’s behavior. There is a set of predefined rules, which are used to decide what the character should do. We applied this algorithm to the football players by deciding what their motions should be when they come in contact with one another. The decision on what motion a player should have is determined by a few factors. These factors are team, time, and who his opponent is that is coming into an intersection with him. 


Basically, the football coach has to enter all of his players and the field and specify and path for each one of them. He also has to make sure that the timing is correct for all of them. If he wants two players to interact at a certain position on the field, he has to make sure that those players get there at close to the same time. Once he is done entering all of his data, the algorithm goes through all of the players’ paths and finds where there are players on the field, which are close to each other at a certain time. Once it has found them, it decides based on their positions in the play and where the play is at this current time (i.e. does the quarterback have the ball, or does a receiver have the ball) what the players’ motions should be.

Implementation:


The algorithm is implemented in two classes, which are part of the Ched application: Translator.java (translator) and Decision.java (decision maker). The translator goes through the paths of the players and finds where there are intersections in their paths using timing and the control polygons for the paths. Once it has found an intersection, it sets flags for the beginning and end of the intersection and passes the decision maker the players, which have intersected. The decision maker goes through the players and decides what motions they should have during this intersection based on their positions and where they are on their path.


Translator.java: (ask Denis for documentation)


Decision.java:

· Play aPlay

This variable holds the current play

· Decision(Play curr)

This is the constructor for the Decision class. It assigns the aPlay variable of the Decision class to its parameter, the current play.

· decide(Vector players)

This is the function, which looks at all the players in the intersection and decides what the basic motion for that player should be.

· playerInIntersection(Player player, Vector players)

This function checks if the player passed in is part of the players that have intersected. This is useful to check if the ball carrier is part of the intersection (this could be a quarterback, wide receiver, or half back).

· synchronize(Vector players, int [] motions. Boolean [] v_endIsLast)

This function is called by the decide function. Currently, it synchronizes two players. Synchronizing means that the angles of the players are taken into account and the players are rotated to a 90, 180 or 270 degree difference with the addition of _back, _forward, _left, or _right to the motion of the players. This adds for a greater variety in the motions of the players as well as a better visual effect in the interaction between the players because when the motions were created in Poser 4, there was a specific angle difference between the players.

· setControlPoints(Vector players, int [] motions, boolean [] v_endIsLast)

This function goes through the players and sets all their control points to the motion that has already been decided by decide.

· findPlayerWBall(Vector players, double time)

This function finds the player on the field who has the ball at the specified time passed into the function.

· offenseHasBall(Vector players, double time)

This function checks to see if the offense has the ball at the specified time passed into the function.

· findPoseIndex(String motion)

This function is an utility function. It finds the index of a specified string in the POSES array.

· setInitPositions(Vector players)

This function sets the initial positions (three point stance, quarterback stance, neutral stance, run stance) of the football players depending on their positions.
Shortcomings & Future Work:

· The timing could be incorporated in the AI algorithm so that the user doesn’t have to fuss with the timing problems
· The distance between players for the interaction should be somehow fixed by the AI algorithm – or in other words path changing for the players
· The synchronize mechanism should be improved so that more than two players can be synchronized
· Look into autonomous bodies AI algorithm – it is currently used in game development
· Perhaps look at the idea of events
· Automatic path finding for players once a final point has been given – i.e. you only need an initial point and a final point and the algorithm decides what the path of the player should be depending on who is around him.
· Interceptions, kickoffs, different specialized football strategies depending on specific team.
File Location: /name/vr/data/football/docs

August 31st, 2000


