
Compatible Structures in ANS Forth

David N. Williams

Version 1.0.1

July, 2000

Abstract

We present a Structure word set for ANS Forth, and provide a portable imple-
mentation in the file cstruct.fs. A major aim is compatibility with struc-
tures in C libraries. The idea for making structures nestable with reusable
field labels is taken from Randolph Peters’ Pocket Forth implementation [1],
and we implement some early binding ideas stressed in a Forth Scientific
Library implementation [2]. We implement both left and right syntaxes for
structure data references.

Copyright c© 2000 David N. Williams

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation, with no Invariant
Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU free documentation
license”.

ii

Contents

1 Introduction 1
2 Structure of structure data 9

2.1 Structure instances . 9
2.2 Structure type definitions . 10
2.3 Structure field classes . 12

3 Type structures 15
4 Layout algorithm 19

4.1 Normal fields . 19
4.2 Bit-fields . 21

5 Overview of structure words 25
5.1 Structure word set . 25
5.2 Description . 25
5.3 Implementation note . 31

6 Overview of structure extension words 32
6.1 Structure Extension word set 32
6.2 Description . 32
GNU free documentation license 37
References 49

iii

1 Introduction

Not only does Forth lend itself to a variety of structure schemes, but simple
schemes can be very effective for the application at hand. The elegant imple-
mentation in Anton Ertl’s Gray parser generator [3] is a good example of this
occasional approach, where the implementation is precisely suited to its use.∗

More elaborate schemes, such as that in the Forth Scientific Library (FSL)
project [2] and those in this document, can be both ANS Forth portable and
reasonably efficient at runtime.

Taken as a whole, the Structure word set in this document is not simple.
It is designed to be compatible with C structures, with the aim of supporting
the use of C/POSIX libraries. Actually, the discussion is more elaborate
than the code, and the code would be a good deal simpler if it did not cover
bit-fields. If stripped to Peters’ elegant core design, it becomes fairly simple
and effective for Forth-centric applications.

We attempt to control the complications a bit in the implementation file
cstruct.fs by dividing it into sections, with flags for conditional compilation
of various features.

∗According to Ertl, inspired by earlier work possibly by John Hayes.

1

Being compatible with C structures does not mean that the syntax has to
be derived from C, but it does fix the layout of structure data. For example,
the POSIX standard function localtime() converts the output of the POSIX
time function into year, month, day, hours, minutes, etc., and actually stores
into a struct tm. If this function is called from Forth (glue for that is not
discussed here), the Forth structure words have to know how to build and
access a standard struct tm.

This is a bit of a problem, because standard C programs [4, 6.5.2.1] are
not allowed to assume much about the packing or alignment of the memory
layout of structures, although the ordering of structure elements in memory
has to be the same as in the structure declaration [4, 6.5.2.1], [5, p. 213].†

The approach we attempt for layout is based on that of the GNU CC
compiler [7], which uses implementation-dependent macro expressions and
constants to parametrize the underlying system. As far as we can see, even
the major system not (yet) covered by GNU, namely Mac OS, can be handled
this way. The GNU source indicates that their scheme also covers other
languages.

†The ordering of structure elements in particular structure declarations in standard
C/POSIX libraries is however not prescribed [6, p. 551]; a POSIX standard program is not
supposed to declare the structures in the standard library independently, but is expected
to get them directly or indirectly from the system header files.

2

Although we intend to cover all standard kinds of C structure fields for
the GNU machines, our attempt is not quite comprehensive. For example,
we allow bit-fields and arrays as structure elements, but we don’t include
any data access words for them. But mainly, we can’t claim a comprehensive
understanding of the GNU structure layouts, which are not definitively doc-
umented in any one place, as far as we know. The GNU source is a complex
body of knowledge, and even with a lot of embedded documentation, is not
exactly your normal bedtime read. Although somewhat C literate, we are not
C expert. We hope we have understood the essential part of it. Our funda-
mental understanding is that, with the exception of bit-fields, any structure
layout can be reproduced by specifying a minimum structure alignment, a
structure size minimum roundup, and the sizes and alignments of all basic
data types (char, short, int, long, . . .), plus pointer types, which we call
“atomic” data types.‡

We state the algorithm we actually follow in Section 4.

‡We use the word “alignment” to mean a number of address units of which the address
of a data block in memory is a multiple, like 1, 2, 4, 8, . . . In standard C [4, 3.1,3.4],
bytes are not necessarily 8 bits, but as far as alignment is concerned are effectively address
units. We always mean 8 bits when we say “byte”. The number of bits in an address unit
is system dependent.

3

Except for bit-fields, the system interface is in the file machine.fs. The
version we provide works for the Amiga 3000 (Motorola 68030), NeXT (Mo-
torola 68040), and Macintosh (Motorola 680x0). What we aim at there is
a sufficient parametrization, not a direct mapping of the GNU macros and
constants for system parameters.

After some testing with a GNU CC compiler on a NeXT with results
that surprised us, we decided to take seriously the warnings in Kernighan
and Ritchie [5, pp. 150, 213] that bit-fields are especially implementation de-
pendent in standard C. They should be rare, but do occur in several Berkeley
UNIX header files. Although there seem to be none among the required struc-
ture elements in POSIX structures, there also seems to be no guarantee that
they do not occur legally as nonrequired elements in particular implementa-
tions of required structures.

Our approach is to make no attempt to map the GNU parameters that
affect bit-fields, such as PCC_BIT_FIELD_TYPE_MATTERS, but to make Forth
bit-fields rich enough to reproduce any possibility, and leave it up to the
user to test what a particular system does and supply the appropriate Forth
syntax. In other words, for bit-fields the Forth syntax may vary with the un-
derlying system, while for “normal” structure elements the syntax is system
independent.

The implementation here addresses several issues:

4

1. Nesting of structures and unions to any depth. This is not uncommon in
Forth (at least for structures), e.g., the FSL implementation [2] does it as
does the Forth-83 implementation in Dick Pountain’s book on object-oriented
Forth [8].

2. Orthogonality of field names. I.e., allowed use of identical names in dif-
ferent structures.

For these two issues, we adopt the solution in Randolph Peters’ imple-
mentation in Pocket Forth [1]. We translate that part of his scheme to ANS
Forth, with only cosmetic modifications. Nesting of structures is essential for
C layout compatibility. Orthogonality of field names is not; but it’s nice to
have, and should make it easier to translate between C and Forth structure
definitions. Peters’ is the only Forth implementation of reusable field names
that we know about.

We do not implement independence of field names from other Forth names
that might be found first in the search order. That would not be hard to do,
say, by searching only a tokens word list when a field name is wanted.

3. Field typing. We elaborate aspects of Peters’ scheme and the typing
scheme in the FSL [2] implementation, which are similar in spirit, and both of
which lend themselves to alignment. Peters includes unstructured data fields
of any size and substructures, and the FSL also has integer:, float:, and

5

array: fields, plus unions. Besides these, we include bit-fields and many
of the scalar C types, which we call atomic types. We do not make the
signed/unsigned distinction, leaving that to the user; and we include only
a single pointer type, which is taken to have the same size and alignment
as void* (also the same as char*) in standard C [4, 6.1.2.5]. The focus for
us is on sizes and alignments. Having a single generic pointer type should
be sufficient in that respect for many systems. For systems where that isn’t
true, we make it possible for the user to define his own atomic types, with
their own sizes and alignments.

4. Binding of structure data references. The FSL scheme pays attention to
this issue, the point being that a straightforward elaboration of the syntax
for variables to access data in structure instances means extra overhead,
both in code size and execution time. And that on the other hand structure
and substructure field names are fixed, so the overhead can be avoided in
a word definition where the structure instance is known at compile time by
precomputing and compiling the field address (early binding). Dick Pountain
[9] discusses that, too.

Since this is likely to be a common situation, we provide some explicit
early binding operators in a Structure Extensions word set, including]@,]!,
]c@,]c!, and a few others. This kind of peephole optimization is a minor

6

issue for ordinary variables, and a portable implementation is unlikely to
make them more efficient. If written in assembly language, such words could
be implemented for explicit optimization of ordinary variables as well. For
structures, even a portable optimization can be significant.

Otherwise the binding is late, corresponding to the direct generalization
of normal syntax for variables. For array fields one might want to mix the
two, binding the address of an array field early, and an index into the array
late.

5. Data reference syntax. There are two basic syntax choices for referring to
data in a structure or union instance, where the field names are mentioned
before or after the instance name, and also two basic orderings for the names
in each. Peters puts the field names before, ordered from deeper structure
nesting on the left to shallower on the right, which makes a natural chain,
including the parent structure itself furthest to the right. That is expressive
for his examples, (reproduced later), and is also natural for implementing his
substructure scheme. The FSL scheme follows the C style of putting field
names after the instance name, ordered towards deeper on the right, with
the parent structure furthest to the left, again a natural chain including the
parent. We reject the other two, “unnatural” orderings, somewhat arbitrarily,
because syntactic conventions could probably be discovered that would make

7

them seem natural.
Surely neither of the remaining “natural orderings” optimizes expressive-

ness in all situations, so we cop out and do both. We do adopt the field prefix
mode for the more primitive words in our list. This interacts with the next
issue.

6. Action of named structure instances. Should the execution of a named
structure instance simply leave an instance pointer, or should it resolve nested
field names and leave a field address and/or size, or fetch a value according
to its data type, or perform a method, or what? A general purpose scheme
should at least not hinder any of these possibilities. Clearly whether field
names precede or follow the naming of an instance interacts with this ques-
tion.

We provide a named-instance defining word typeof intended for use with
DOES> to make defining words with various actions. We also define two
generic words of that sort, {}structof and structof{}, designed for use
with address and data access operations to be described later.

8

2 Structure of structure data

In the interest of focus, we describe here the layout of structure data and
type information that we have in mind.

2.1 Structure instances

A structure instance contains the actual data of a structure, and possibly
more information. Instances may be either named or unnamed. The es-
sential kernel of either kind of instance is the structure data itself, which
we understand to exclude type information. This is the part whose layout
should be C compatible. We call the address of such a memory block of pure
data the sda, for “structure data address”. If we speak of a structure pointer,
we mean the sda. Substructure instances are presumed to contain only pure
data.

As a rule of thumb in our discussion, unnamed structure instances contain
only pure data, and named instances (in the sense of named Forth words)
contain one extra piece of information, a pointer to the structure type in-
formation. That pointer is called an stype. Although substructures have
named identifiers, substructure instances are not “named structures” in the
Forth sense, and as we said above contain only pure data.

9

Layout of a typical named structure instance:

stype

field 1 data
...

field n data

The address of field 1 data is the sda. Alignment for compatibility
with the underlying system is understood. There is a subtlety here. The
named structure instance is typically made with CREATE, and stype occupies
the first cell in its data field, at the Forth-aligned dfa. Then field 1 data is
not necessarily located one cell after the dfa, because the structure alignment
may not be consistent with that. Structure data access words have to take
this into account.

A typical unnamed instance would omit the stype.

2.2 Structure type definitions

The structure type definition contains the information about the layout and
sizes of the structure fields. We implement the structure type pointer, or
stype, as the dfa of a structure type word.

10

Layout of a structure type definition (implementation dependent):

code field (CREATE’d action leaves the dfa)
stype: structure data size (including padding)

class (1 for structures)
structure alignment

#fields

field 1 parameters
...

field n parameters

In this discussion the “field” in field 1, etc., is used in the sense of a C
structure element. In discussions of standard C, “field” is sometimes used as
a synonym for “bit-field” [5, p. 149], a practice we avoid.

The data field arrangement, following the code field, varies only a lit-
tle from Peters’ “type definition table”. We call it instead the “structure
table”, reserving “type definition” for more generic data typing. In other
words, our stype is the address of the structure table. Including explicit
information on the number of fields rather than a table termination signal
is an implementation detail. Although the layout of the structure table is

11

an implementation detail, we like keeping the ordering the same as for the
storage of the structure data.

The field parameters in the structure table allow the construction of field
offsets from the beginning of pure structure data, including substructure
nesting. As long as they satisfy this function, their order and content are
implementation details.

Layout of structure field parameters (implementation dependent):

field identifier

field offset

field type pointer

2.3 Structure field classes

We require six classes of fields, organized in this implementation as follows:

12

field class type pointer
unstructured data 0 ustype

structure 1 stype

atomic data type 2 adtype

array 3 atype

union 4 utype

bit-field 5 bftype

The class numbering is implementation dependent. The numbering here
reflects our personal implementation priority, with levels of conditional com-
pilation in mind. An important use of the class number is to indicate nesting
termination.

The unstructured data class should not be included in C compatible struc-
tures. Taken together with just the structure class, it can provide a simple,
standalone Forth structure facility with full nesting and independent field
identifiers, where the user keeps track of primary data types and sizes. This
kernel is our ANS translation of Peters’ implementation, and there is an
option in cstruct.fs to compile just that much.

The atomic data types are the standard C types, char, short, long, int,
long double, float, char*, etc. Each has a type definition pointed to by
an adtype, described in Section 3.

13

Arrays are made of elements all of the same kind (including especially
size), which may belong to any of the six classes except bit-fields. To be C
compatible, the array elements should not be unstructured data.

Unions are made of elements whose storage space overlaps, with size and
alignment large enough to accommodate the largest. The elements may be-
long to any of the six classes, except that unstructured data should not be
included in C compatible unions.

As Kernighan and Ritchie express it [5, pp. 148, 213], a union is just
a structure with all elements offset by zero from the beginning, with align-
ment accommodating the biggest alignment of any element, and with size
big enough to hold any element.

There will be more words later about bit-fields than we would have
wished.

In this implementation, each structure field parameter occupies one cell,
which means 12 bytes for each field in 32-bit environments. Since we expect
that most applications will either involve relatively few structure tables, or
will correspond to an industrial strength environment when there are many,
this may not be excessive. On the other hand, restricting structure instances
to 64K bytes is likely to be more than adequate, in which case 16 bits for each
of the first two parameters should suffice, which would reduce the overhead
to 8 bytes.

14

3 Type structures

In Section 2 we introduced atomic data, arrays, unions, and bit-fields as
classes of structure fields. In C they are also basic data objects (except for
bit-fields, which occur only in structures), with unions on much the same
logical footing as structures.

During implementation, we found ourselves driven to a typing scheme
with a partial type data structure shared by all types, including each of
the atomic data types. In this section we lay out the type data pointed to
by adtype, atype, utype, and bftype, as well as that pointed to by the
unstructured field type pointer, ustype. The first three fields, i.e., size,
class, and alignment, are shared by all types, including that for structures
already described in Section 2. The size in the first field is measured in
address units.

Here are the type information layouts. For completeness, we include the
stype layout given in the Section 2:

ustype: size (of unstructured field)
class (0)
alignment (1)

15

stype: size (including padding)
class (1)
alignment

#fields

field 1 parameters
...

field n parameters

adtype: size (of atomic data)
class (2)
alignment

atype: size (#elements× size of type at type pointer)
class (3)
alignment (of element type at type pointer)
#elements

type pointer (to element type)

16

utype: size (rounded max of union field sizes)
class (4)
alignment (max of union field alignments)
#fields

field 1 parameters
...

field n parameters

bftype: size (of 0, 1, or 2 containers in bytes)
class (5)
alignment (of container type)
size (of container type in bits)
bit offset (in first container field)
#bits (in bit-field)

Although we include array fields in structures and unions, we implement
neither array data objects nor accessors for array data. C allows multiple
array indices, which it treats by having arrays of arrays. We take that to be

17

a matter of access, irrelevant for the atype, which does not record how many
indices might be used to index the data.∗

The union definition table pointed to by utype has exactly the same
form as a structure definition table, with a different interpretation of size
and alignment as indicated in the table above, and with offsets in the field
parameters all set to zero.

We found the implementation of bit-fields a major project. The idea is
to save space by packing more than one bit-field or partial bit-field into a
system storage unit. This is explained further in the Section 4.

∗The atype layout here could in principle be used for an implicit multiple index scheme
by letting the element type pointer be another atype, etc., in a chain ending with a non-
atype, corresponding to the last index. All of the alignments in the chain would be the
same, that of the final array element type. Seems more complicated than we’re likely to
need.

18

4 Layout algorithm

Here is the algorithm we follow for structure and union layout, aimed at
compatibility with the GNU scheme for parametrizing systems, as long as
there are no unstructured fields, and with a certain exception for bit-fields.
There is no distinction between signed and unsigned types. It is up to the
user to handle that at the point of field access, when it is an issue. Byte-
ordering is irrelevant at the layout level—that affects field data access only.
Whether bit-allocation for bit-fields is from left to right or right to left within
an embedding integer field is irrelevant at the layout level for the same reason.

4.1 Normal fields

The rules in this subsection are mostly for everything except bit-fields.
1. Each atomic data type has a size in address units and an alignment

in address units, which is system dependent. These alignments are often
expressible in terms of only a few parameters, but each is specified indepen-
dently in our scheme at the level of the data type structure. We include a
single, generic pointer type as an atomic data type, not distinguishing among
pointers to different data type instances. Other atomic data types can be
supplied by the user.

19

2. Each structure field has a size, an alignment, and an offset from the
beginning of the structure.

3. The size of a structure is the sum of the sizes of its fields, plus any
padding between fields to achieve alignment of the later field, plus a padding
at the end to round up the size to a multiple of the structure alignment.
The contribution of bit-fields to the size will be discussed later. GNU also
includes a system dependent ROUND_TYPE_SIZE macro, which seems to be
defined only for the Intel 80960. We have omitted this. It would occur in the
words }struct and }union.

4. The size of a union is the maximum of the sizes of its fields, rounded
up in the same way as the size of a structure. The contribution of bit-fields
is again special.

5. The alignment of a structure or union is the maximum of a minimum,
system prescribed alignment for structures and unions, and the alignments
of all of its fields except bit-fields, which count as integral atomic types for
the purpose of alignment.

6. Each structure or union field consists of an atomic data type, a struc-
ture, a union, an array, a bit-field, or an unstructured field.

7. An array has elements all of the same type (which implies the same
size and alignment), which can be any of the atomic data types, a structure,
a union, or an array.

20

8. The size of an array is the number of elements times the size of one
element. The alignment of an array is the alignment of any element.

9. The raw alignment of an unstructured field is one address unit. Other
alignments may be forced, but are recorded only implicitly in the offset of
the field, not in the unstructured field type instance.

4.2 Bit-fields

For bit-fields, we have already mentioned that we do not attempt to map the
GNU macros. In the C Standard [4, 6.2.1.2], named bit-fields are associated
with one of the int types (unsigned or signed), and cannot have a width of
more bits than that type. Our reading of the standard is that the actual
container size can be anything big enough, and does not have to be built
from a sequence of int sizes. The bit-field is allowed to overlap a container
boundary if there are too few bits available for packing in it, or not, depend-
ing on the implementation. The alignment of the container is unspecified.
Unnamed bit-fields with only a container type and a width specified can be
used for padding; and an unnamed bit-field of width zero forces packing to
end in the current sequence of bit-fields, if any, with the next bit-field start-
ing a new container. The syntax for bit-field access is like that for an int.
Whether the policy for bit-field layout when embedding would overlap a con-

21

tainer boundary has to be the same for structures and unions is undefined in
the C Standard.∗

GNU CC admits other integral types for bit-fields, such as char, long,
etc.

The approach we take in Forth makes possible the layout of a sequence
of contiguous bit-field declarations starting with any alignment, any number
of bits of initial, unnamed padding, any width of named bit-fields with any
unnamed padding in between, embedded in any commensurate total num-
ber of address units with any unnamed bit-padding at the end that is also
commensurate with the total number of address units.†

We adopt the spirit that the container type not only limits the maximum
size of a bit-field, but also has size and alignment implications for the con-
tainer. Flexibility of container size and alignment is achieved by allowing
non-int container types.

∗The terms “unspecified” and “undefined” have a technical meaning in the C Standard,
roughly the following. “Unspecified” is for correct language constructs and data, and
means the standard “explicitly imposes no requirements” (not the same as imposing no
explicit requirements) [4, 3.17]. “Undefined” is for nonportable or erroneous situations,
and means the standard “imposes no requirements” [4, 3.16].

†As far as we understand, this is possible in GNU CC.

22

1. Any atomic type is allowed for bit-field embedding. We call this the
container type or the type of the container field. Container types with the
same number of bits and the same alignment are not distinguished from each
other. The spirit is that the container type should be of integral type, i.e.,
char, int, etc.

2. The width of a named bit-field must be nonzero, while that of an
unnamed bit-field may be zero.

3. When nonzero the width of a bit-field may not be larger than that of its
container type. As many bits as possible are allocated from the unallocated
bits in the container field of any immediately preceding bit-field with the
same container type; and if a nonzero width is left over, a new container
field of the same type is started for the remaining bits. That is, we require
the bit-field to overlap an embedding boundary in such a case. If there
is an immediately preceding bit-field of different container type, there is
no embedding in the preceding container field; and a new container field is
started (with the alignment of its type) for all of the bits in the bit-field. This
paragraph applies only to nonzero widths. It implies that such bit-fields have
either one container field, or two container fields of the same type when it
straddles an embedding boundary. We require that structure and union bit-
field elements have the same layout; i.e., if a bit-field in a structure overlaps,
requiring two container units, it also overlaps and generates two container

23

units in a union. The offset of the first container field is zero in a union.
4. A zero-width bit-field with any container type prevents further em-

bedding into any immediately preceding field, and aligns the initial offset for
the next structure or union field according to the container type. It does not
allocate a new container field.

5. Unnamed bit-fields survive in the structure or union table. This would
not be necessary just to get the major effect of padding the offsets of suc-
ceeding named bit-fields within their container fields, and the offsets of those
container fields and of other succeeding named fields within the structure
or union; but we think it’s a good idea to record the unnamed fields in the
structure or union type information.

6. Both named and unnamed bit-fields may occur in any order, adjacent
to each other or isolated among other fields.

24

5 Overview of structure words

This overview is a brief functional description. Stack patterns and other
specifications can be found in the implementation file cstruct.fs.

5.1 Structure word set

struct{ }struct union{ }union

n-aligned unstruct field array-field bit-field bit-pad

cchar cwchar cint cshort clong cpointer cllong

cfloat cdouble cldouble

/type /align make-type-instance typeof

make-atomic-type make-array-type make-unstruct-type

>sfa >sfo >sfa&type >sfo&type

5.2 Description

Here is an example borrowed from Peters (see examples.fs) except that his
word field corresponds to our unstruct, and his word struct corresponds
to our field:

25

struct{

12 unstruct first

16 unstruct last

}struct name.struct

struct{

2 unstruct month

2 unstruct day

2 unstruct year

}struct date.struct

struct{

name.struct field name

date.struct field doa

12 unstruct mrn

64 unstruct precis

}struct pt.struct

The code above defines structure type words name.struct, date.struct,
and pt.struct. We are not particularly advocating the .struct naming con-
vention. If we were to do so, it would probably be a .s convention for struc-

26

tures and .u for unions. The words unstruct and field between struct{

and }struct absorb the type information that precedes them, define or look
up identifying tokens for the field names that follow them (first, last,
month, day, year, name, etc.), and build a sequence of field definition param-
eters on the stack. The word struct{ initiates the sequence, and }struct

creates a structure type word and compiles the sequence of field parameters
from the stack into a structure table in the structure type word’s data field,
preceded by the other information described in Section 2.2.

When executed, the field names leave their identifying tokens, called id’s,
on the stack; and the structure type words leave their dfa’s, that is, their
stype’s.

Here is a structure type including one C char field and one field with an
array of 10 C long’s:

struct{

cchar field sue

10 clong array-field george

}struct harry.struct

And here is one containing two arrays of harry.struct structures:

27

struct{

15 harry.struct array-field arthur

20 harry.struct array-field marie

}struct harry-arrays

The examples above are included in shotype.fs, along with union ver-
sions and bit-field examples, to illustrate a browser for structure and union
types implemented there.

The word n-aligned is mainly a factor in the field constructors field,
array-field, and bit-field; but it can be used explicitly when alignment
of an unstructured field is wanted (the field constructor unstruct does no
alignment). For example, if one wanted the field

2 unstruct year

in date.struct above to have an alignment of four, one could say:

2 4 n-align unstruct year

This is tricky, because it not only has the effect of saying

4 unstruct year

28

but also adjusts an implicit alignment deeper on the stack. The best policy is
to avoid explicit use of n-aligned if possible, and use the implicit minimum
alignment of structures, plus padding included directly in the size of the
unstructured field.

The word bit-pad inserts unnamed bit padding.
The atomic type words cchar . . . cldouble represent most of the scalar

GNU CC types. Some of these are not standard C.
The word /type converts any of the six type structures into its data size

in bytes, and /align converts them to the sizes of their alignments. For
bit-fields, the data size is that of the 0, 1, or 2 container fields.

The words make-unstruct-type and make-array-type are used in this
implementation by unstruct and array-field as factors that build type
words on the fly. They could also be used explicitly to make unstructured
type and array type words to be used with field, dispensing with unstruct

and array-field. The word make-atomic-type is intended to let the user
cover C implementation-dependent gaps, for our example, in our pointer type
coverage. The make- style of nomenclature is borrowed from Anton Ertl’s
Gray [3].

The word make-type-instance is used to allocate type instances.
A number of words like >sfo do exactly the same thing when operating

on structure or union types. To save names, we take the attitude in such

29

cases that a union is just a kind of structure.
The word >sfo converts a structure or union type and a sequence of id’s

for nested substructures that resolves to an atomic or unstructured or array
field, such as last name for the structure type pt.struct in the example
above, into the offset of the field from the sda of an instance. Here “sfo”
stands for “structure field offset”. For bit-fields, the offset of the first con-
tainer field is returned. The word >sfo can also convert a truncated nesting,
such as just name with pt.struct. Examples of the syntax are given in
Section 6.

The word >sfa does the analogous thing, but takes an sda as well as an
stype as input, producing the address of the field instead of the offset. For
bit-fields, that is the address of the first container field.

The words >sfo&type and >sfa&type also leave the type pointer. They
evolved from a factorization of Peters’ implementation, which returned sizes
instead of types.

Nesting in the id chains resolved by these words cannot go deeper than
an id for one of the primitive types: unstructured, atomic data, or bit-field.
It is also stopped by an array type. Although an array may have structure
elements, a new chain would have to be started to access any nesting in those,
after indexing into the array. As we said earlier, we do not implement array
access.

30

See cstruct.fs for more details about the Structure word set.

5.3 Implementation note

Our implementation makes a type instance for every unstructured field, array
field, and bit-field in a structure type definition. We indicated above that
unstruct and array-field can be eliminated by using explicitly defined
types with field. That would reduce the type overhead if there were several
unstructured fields or arrays of the same type.

In the case of bit-fields, implicit type generation helps us track the arbi-
trary bit offsets they can have in their containers. We have not been tempted
to try to reduce that overhead.

31

6 Overview of structure extension words

As in the previous section, we given only a functional overview here, without
stack effects. Details can be found in cstruct.fs.

6.1 Structure Extension word set

{ }#

{}structof {}structof/

structof{} }& }&/

]&]&/]@]!]c@]c!]2@]2!]execute

6.2 Description

The words { and }# simply count the number of parameter stack elements
between them, and could be of general utility.∗ Although we indicate at the
end of this section how }# can be used explicitly for early binding of field
offsets, we use it mainly as an implementation factor in the DOES> part of the
structure instance defining words {}structof, {}structof/, and struct{}.

∗We think that words like { should be declared officially to have at-will meanings.

32

The first two are for left field syntax words, and the third is for right field
syntax. (The same three words are used to define union instances.)

To illustrate, we continue with our translation of Peters’ example. In the
{}structof variant, we create an instance of the structure pt.struct with
name }patient like this:

pt.struct {}structof }patient

To retrieve the address of the first field in the name substructure in the
structure instance }patient, we would say:

{ first name }patient

The address of the name substructure is returned by

{ name }patient

and that of the }patient structure data (i.e., the sda) by

{ }patient

A right field variant would be

pt.struct structof{} patient{

33

In the left field variant the structure word }patient does the address
calculation. In the right field variant we use an explicit field closing operator
to do that, a variation on Julian Noble’s array syntax [9], with which it
fortunately does not conflict:

patient{ name first }&

The addresses of the name field and the patient{ structure pointer would
be given by:

patient{ name }&

patient{ }&

The left syntax example in the file examples.fs actually uses the defining
word {}structof/, which builds instances that leave the field size as well as
the address. This is very much like Peters’ word new.struct, the effective
differences being that new.struct does not require an opening { for the id

list of an instance it creates, and that its id lists have to resolve all the way
to a primitive field.

The right syntax example in examples.fs gets the same effect by us-
ing the closing word }&/ with a structure instance patient{ defined using
structof{}.

34

The words beginning with] are the closing words for early binding men-
tioned in Section 1. Here is a sample phrase that could be used in a word
definition to compile the address of the last name field of the }patient

structure instance as a literal:

[{ last name }patient]&

These words all start by switching to compilation mode, where they com-
pile a simple action based on a computation stacked from interpretation
mode. They are best understood directly from the implementation in the file
cstruct.fs, and from the examples in examples.fs.

In version 1.0 of this word list, we included early-binding words for struc-
ture field offsets, for example,]o. We left them out of this version because
they are redundant, and because the offsets are most often wanted for com-
puting addresses, which is already covered. The same effect can be achieved
by using a structure type word with >sfo or >sfo&type between [and].
For example, to compile the offset of the last name field from the sda of
}patient into a word definition, we would use the structure type directly in
the phrase:

[{ last name }# pt.struct >sfo] literal

To compile the offset of the name substructure, we would use:

35

[{ name }# pt.struct >sfo] literal

The syntax { . . . }# can be eliminated by giving the number of id’s explicitly:

[last name 2 pt.struct >sfo] literal

and

[name 1 pt.struct >sfo] literal

36

GNU free documentation license

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. Preamble

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

37

1. Applicability and definitions

This License applies to any manual or other work that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. The “Docu-
ment”, below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can be
viewed and edited directly and straightforwardly with generic text editors or (for images

38

composed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage subse-
quent modification by readers is not Transparent. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LATEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML produced
by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

2. Verbatim copying

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical

39

measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. Copying in quantity

If you publish printed copies of the Document numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using

40

public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

41

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History”section. You may omit a network location for a work that was published

42

at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their titles
to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified

43

Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. Combining documents

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sections

44

entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete
all sections entitled “Endorsements.”

6. Collections of documents

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of that
document.

7. Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an “aggregate”, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

45

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

46

10. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with the Invariant
Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

47

http://www.gnu.org/copyleft/

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

48

References

[1] Randolph M. Peters, June 14, 1993: Struct.

[2] “High order data structures V1.9”, January 18, 1995: structs.txt,
structs.seq.

[3] Anton Ertl, “Gray”, release 4, August 8, 1994: gray4.tar.gz.
See also: struct.fs, structs.html.

[4] American National Standard for Programming Languages–C, ANSI/ISO
9899-1990.

[5] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Lan-
guage, second edition, (Prentice Hall, Englewood Cliffs, New Jersey, 1988).

[6] Donald A. Levine, POSIX Programmer’s Guide, (O’Reilly & Associates,
Inc., Sebastopol, California, 1991).

[7] Free Software Foundation, Using and Porting the GNU Compiler Collec-
tion (GCC), “Target Description Macros”: “Storage Layout”,
“Layout of Source Language Data Types”.

49

ftp://feynman.physics.lsa.umich.edu/pub/williams/forth/peters/Struct
ftp://ftp.taygeta.com/pub/Forth/Scientific/structs.txt
ftp://ftp.taygeta.com/pub/Forth/Scientific/structs.seq
ftp://server.complang.tuwien.ac.at/pub/forth/gray4.tar.gz
http://mips.complang.tuwien.ac.at/forth/objects/struct.fs
http://mips.complang.tuwien.ac.at/forth/objects/structs.html
http://gcc.gnu.org/onlinedocs/gcc_17.html#SEC210
http://gcc.gnu.org/onlinedocs/gcc_17.html#SEC211

[8] Dick Pountain, Object-Oriented Forth: implementation of data struc-
tures, (Academic Press, New York, 1987).

[9] Julian V. Noble, Scientific Forth, (Mechum Banks Publishing, Ivy, Vir-
ginia, 1992), pp. 105, 106.

50

	Introduction
	Structure of structure data
	Structure instances
	Structure type definitions
	Structure field classes

	Type structures
	Layout algorithm
	Normal fields
	Bit-fields

	Overview of structure words
	Structure word set
	Description
	Implementation note

	Overview of structure extension words
	Structure Extension word set
	Description

	GNU free documentation license
	References

