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1 Introduction
These notes review the rigorous justification for the calculus of infinitesimal gen-
erators of unitary representations of the Poincaré group, that is, iSL(2,C). As
physicists, we learn early that the self-adjointness of unbounded, Hermitian op-
erators (unbounded observables), is nontrivial, that having a dense domain of
definition is not enough for a unique self-adjoint extension, i.e., not enough for
essential self-adjointness, but that any different extensions are interesting because
they have physical interpretations, etc. Mostly, we are able to understand the is-
sues, but even some of us on the mathematical physics spectrum are happy to
rely on assurances by the mathematicians about the legitimacy of particular cal-
culations, if we think it could matter.

In the case of unbounded observables belonging to Lie algebras of infinitesi-
mal generators of continuous groups, the situation has actually been rather good
for a long time. Since the elegant work of Gårding in 1947 [4], we have been free
to operate on Gårding domains of C∞ vectors, formed by smearing the unitary
representation acting on any dense set of vectors with smooth functions on the
group, with the assurance of essential self-adjointness. And Nelson’s definitive,
comprehensive, and dense but quite pedagogical work of 1959 [9] asserts the ex-
istence of common domains of essential self-adjointness consisting of analytic
vectors.

Nelsonmentions [9, p. 592] that the replacement of smooth by analytic smear-
ing over the group inGårding’s construction gives analytic vectors,1 and shows by
extending a result of Gelfand [5] for bounded representations of a one-dimensional
group of operators that smearing with the fundamental solution of the heat equa-
tion on the group produces a dense domain of analytic vectors for Banach space
representations of the group. His theorem for Hilbert space representations uses
instead analytic dominance by an elliptic operator in the enveloping algebra of
the Lie algebra representation, with analyticity of the vectors defined by strong
power series expansion of the action of the operators. Flato, Simon, Snellman,
and Sternheimer [3] give an interesting condition for the common essential self-
adjointness of the infinitesimal generators, and hence their integrability to one-
parameter subgroup representations, called the “FS3 criterion”.

The Gårding construction is simple. It does use group manifold concepts
that are not that common among physicists, but they are not that hard to under-
stand. Physical interpretation of the resulting vectors is, however, at best indirect.

1He refers to Cartier and Dixmier [2] and Harish-Chandra [8] as sources for this remark.
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The Nelson theorems for analytic vectors are in the category of full-blown “hard
analysis”, and the condition for common essential self-adjointness in the Hilbert
space version is mathematically technical. The FS3 criterion aims to be more
practical, but remains technical.

For those unitary representations of the Poincaré group that describe elemen-
tary particles, the treatment below, starting with Section 6, gives conditions for
C∞ and analytic domains of essential self-adjointness characterized by regular-
ity and growth properties of group-invariant domains of momentum space wave
functions; still technical, but more in the sense of “soft analysis”. It shares with
the Gårding method the key simplification of invariance of the domains under
the group representation, rather than just under the representation of the Lie al-
gebra, which avoids Nelson’s famous counter example.2 And like the Gårding
approach, it deals directly with analyticity of the vectors without power series
expansion. As a natural development of ideas that have been around for a long
time, we would not be surprised to learn that these results are already known.
But since we have not been able to find references in the literature, it is possible
that they appear here for the first time.

Section 2 reviews the standard theorems on unitary representations of con-
tinuous Abelian groups and the self-adjointness of their infinitesimal generators.
Section 3 reviews the Gårding construction and its application to C∞ vectors in
Hilbert space. The Nelson theorem for analytic vectors in Hilbert space is re-
viewed in Section 4.

Sections 6 through 8 discuss applications to unitary representations of the
Poincaré group that have physical energy-momentum. Cases with zero mass par-
ticles are a bit tricky.

The last section is a bilbiography. The most helpful references have been
Reed and Simon, for self-adjointness and direct integrals, the Gårding andNelson
articles on, respectively, Cr and analytic vectors, and the wonderful Gel’fand and
Shilov books on generalized functions, for spaces of analytic functions. The com-
prehensive book on group representations by Barut and Raczka covers, among
many other things, group manifold concepts, the Gårding construction of C∞
vectors, Nelson’s analytic vector theorems, the Gårding-Nelson construction of
analytic vectors based on the group heat equation, and the FS3 criterion. We
found the book’s exposition of these topics to be quite good, and it provided a
useful overall perspective.3

2Reed and Simon [12, 273]. See the end of Section 2 below for a brief description.
3Unfortunately legal copies of the book are not readily available in the United States.
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2 Self-adjoint and essentially self-adjoint operators
The theorems and definitions in this section are quoted fromReed and Simon [12].
Unless otherwise stated, domains for linear operators are taken to be linear sub-
spaces.

Theorem 1 (VIII.7 [12, 265]). Let A be a self-adjoint operator and define
U (t) = eitA. Then

(a) For each t ∈ R, U (t) is a unitary operator and U (t + s) = U (t)U (s) for all
s, t ∈ R.

(b) If ' ∈  and t→ t0, then U (t)'→ U (t0)'.

(c) For  ∈ D(A), U (t) −  
t

→ iA as t→ 0.

(d) If lim
t→0

U (t) −  
t

exists, then  ∈ D(a).

Theorem 2 (VIII.10 [12, 269]). Suppose that U (t) is a strongly continuous
one-parameter, unitary group. Let D be a dense domain which is invariant un-
der U (t) and on which U (t) is strongly differentiable. Then i−1 times the strong
derivative of U (t) is essentially self-adjoint onD and its closure is the infinitesi-
mal generator of U (t).

The first part of the following theorem constructs a C∞ Gårding [4] domain
for the n-dimensional translation group. The second part is, as far as I know, the
SNAG theorem.

Theorem 3 (VIII.12 [12, 270]). Let t → U (t) = U (t1… tn) be a strongly
continuous map of Rn into the unitary operators on a separable Hilbert space 
satisfying U (t + s) = U (t)U (s) and U (0) = 1. Let D be the set of finite linear
combinations of vectors of the form

'f = ∫Rn
f (t)U (t)' dt , ' ∈ , f ∈ C∞

0 (R
n) .

Then D is a domain of essential self-adjointness for each of the generators Aj of
the one-parameter groups U (0, 0,… , tj ,… , 0), each Aj ∶ D → D and the Aj
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commute, j = 1,… , n. Furthermore, there is a projection-valued measure PΩ on
Rn so that

(',U (t) ) = ∫Rn
eit⋅� d(', P� )

for all ', ∈ .

I assume that the subscript Ω in Theorem VIII.12 above refers to Borel sets
of Rn, by analogy with Reed and Simon’s definition below for a single, bounded
operator. In the definition, �Ω is the characteristic function of the set Ω.

Definition 1 ([12, 234]). Let A be a bounded self-adjoint operator and Ω a
Borel set of R. PΩ ≡ �Ω(A) is called the spectral projection of A.

Reed and Simon’s proof uses part (c) of Theorem VIII.13, quoted below,
which is equivalent to a definition of commutation that is stronger than just com-
muting on a common domain of essential self-adjointness. Here are the definition
and the theorem:

Definition 2 ([12, 271]). Two possibly unbounded self-adjoint operators A
and B are said to commute if and only if all the projections in their associated
projection-valued measures commute.

Theorem 4 (VIII.13 [12, 271]). Let A and B be self-adjoint operators on a
Hilbert space . Then the following three statements are equivalent:

(a) A and B commute.

(b) If Im � and Im� are nonzero, then R�(A)R�(B) = R�(B)R�(A).

(c) For all s, t ∈ R, eitA eisB = eisB eitB.

In the theorem, R�(A) and R�(B) are the resolvent operators for A and B, e.g.,
R�(A) = (�I − A)−1, which are bounded.

Reed and Simon [12, 273] give a counter example due to Nelson which shows
that commutation on a common domain of essential self-adjointness is weaker,
even with the requirement of invariance of the domain under both operators.
Specifically, he constructs two operators A and B that are essentially self-adjoint
and commuting on the same dense, invariant domain D, but such that the one-
parameter groups eitA and eisB do not commute.
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3 Gårding domains
The only formal theorem in Gårding’s very short article [4] is about continuous
Lie group representations by bounded operators on Banach spaces, without men-
tioning the special case of unitary representations on Hilbert spaces. The Ency-
clopedia of Mathematics currently has no article on Gårding domains. Wikipedia
does have an article, which defines a Gårding domain as corresponding to a
strongly continuous unitary representation of a topological group on a separa-
ble Hilbert space, where it is taken to be any common linear domain of essential
self-adjointness for all infinitesimal generators of unitary representations of one-
parameter subgroups which is invariant under the subgroup representations and
their generators. This is different from the usage of the term in works by Nel-
son [9], Nelson and Stinespring [10], and others [3]. We shall return to this point
at the end of this section.

Below is a paraphrase of the original Gårding theorem, except for part (d),
which follows by a trivial extension of Gårding’s proof.

Theorem 5 (Gårding [4]). Let G be an analytic Lie group with elements g ∈ G
represented continuously by bounded operators T (g) on a Banach space . Let
�(Ω) = ∫Ω dg be a left Haar measure on G, and let Cr0(G) be the set of real
continuous functions on the group manifold with continuous derivatives up to
order r ≥ 0, or all orders in case r = ∞, and with compact support. Let A be the
infinitesimal generator4 of any one-parameter subgroup of G, and let D(A) ⊂ 
be its dense domain. Let r ⊂  be the set of vectors of the form

x(f ) = ∫G
f (g)T (g) x dg , f ∈ Cr0 , x ∈  .

Then

(a) r+1 is dense in ;

(b) r+1 ⊂ D(A);

(c) Ar+1 ⊂ r.

(d) T (g)r = r for all g ∈ G .
4An infinitesimal generator A for a strongly continuous representation of a one-parameter

subgroup ℎ(t) may be defined up to a constant by the t → 0 limit of [T (ℎ(t)) − I]x∕t on the set
D(A) of x ∈  for which the limit exists.
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Proof. I’m not sure why part (a) of the theorem is not stated for r instead of r+1,
since r+1 ⊂ r, and the denseness of the smaller set implies that of the larger.
Gårding’s proof of (a) uses a standard C∞ sequence of positive functions �n on
the group manifold with unit Haar integral having compact support shrinking
around the identity, for which x(�n) → x. The proof of (b) and (c) is based on
the calculation,

T (ℎ) x(f ) = x(f ℎ) , f ℎ(g) ≡ f (ℎ−1g) , ℎ ∈ G ,

with ℎ eventually restricted to one-parameter subgroups. Part (d) is immediate
from the same calculation, because multiplication by a group element is a smooth
map of the group manifold onto itself, so f ℎ is in Cr0(G) whenever f is. □

Theorem 6. Let in Theorem 5 be a separable Hilbert space, and let T (g) be a
strongly continuous, unitary representation U (g) of the group G. Then the sym-
metric infinitesimal generators of its one-parameter subgroups are self-adjoint,
and have r+1 as a common domain of essential self-adjointness for each r ≥ 0.

Proof. Apply Theorem 2 to r+1 and the unitary one-parameter groups, which
inherit the strong continuity of U (g). □

The only requirements for the proof of Theorem 6 are differentiability of the
one-parameter subgroup representations, denseness of the domains of differen-
tiability, and invariance of those domains under the one-parameter subgroups.

Definition 3. Let r be a nonnegative integer. A vector x in a Banach space  is
said to be a Crvector for a bounded continuous representation T (g) of an analytic
Lie groupG on if T (g)x is strongly differentiable on the group manifold for all
orders ≤ r, where r = 0 denotes continuity, and r = ∞ denotes differentiability
to all orders.

Theorem 7. Let r be the set of Cr vectors for the representation T (g) with in-
finitesimal generators A in Theorem 5. Then

(a) T (g)r ⊂ r for all g ∈ G ;

(b) r is dense in  ;

(c) r+1 ⊂ D(A) ;

(d) Ar+1 ⊂ r .
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Proof. Part (a) follows from the group law of the representation and the fact that
g acts as a smooth map of the group manifold onto itself. Part (b) follows from
Theorem 5 because r ⊂ r. Parts (c) and (d) follow from differentiability of the
one-parameter subgroups and the definition of Cr vectors. To be explicit, these
results include 0 =  and ∞ = ∩r r . □

Theorem 8. Let in Theorem 7 be a separable Hilbert space, and let T (g) be a
strongly continuous, unitary representation U (g) of the group G. Then the sym-
metric infinitesimal generators of its one-parameter subgroups are self-adjoint,
and have r+1 as a common domain of essential self-adjointness for each r ≥ 0.

Proof. Given Theorem 7, apply Theorem 2 to the restriction of U (g) to the one-
parameter subgroups of G. □

So, what domains should we call Gårding domains? From Theorems 6 and 8,
the requirements of essential self-adjointness and invariance under the generators
in theWikipedia definition for Hilbert spaces appear superfluous. That definition
requires differentiability, but does not mention Gårding’s elegant construction of
differentiable vectors by smearing over the group. Nelson [9, 589] calls the C∞
case of Gårding’s construction a Gårding space. We follow that style, restricting
the Gårding domain terminology to Cr domains constructed by group smearing,
as in Theorems 5 and 6, and using the terminology dense, group-invariant Cr

domain for Wikipedia-style domains, like those in Theorems 7 and 8. The do-
mains r are the largest dense, group-invariant C

r domains, automatically dense
by Theorem 7; but Theorem 8 extends to smaller domains in the following way:

Theorem 9. Let U (g) be a strongly continuous unitary representation of an an-
alytic Lie group G on a separable Hilbert space . Let D be a dense U (G)-
invariant Cr+1 domain. The any symmetric infinitesimal generator A of a one-
particle subgroup of G is essentially self-adjoint on D and AD ⊂ r.

4 Analytic vectors
The short article on analytic vectors in Encyclopedia of Mathematics has a list of
references. Among those, the “FS3 criterion” paper by Flato, Simon, Snellman,
and Sternheimer [3] is interesting and clarifying.

Nelson’s original article, is explanatory and illuminating, but dense. In par-
ticular, we have found his calculus of absolute values, used for the efficient ex-
pression of statements and results, an unwanted conceptual load, which we have
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had to confront repeatedly when we have consulted the paper because it hasn’t
stuck. And it’s really not that difficult.

commutative free monoid
free monoid

5 Poincaré Group Preliminaries
The irreducible representation for nonnegative mass and half-integer spin is the
essential component for all three classes of representations of the Poincaré group
for which we discuss C∞ and analytic vectors in the following sections. The basic
cases are the irreducible representation itself, finite tensor products of irreducible
representations. Fock representations are countable direct sums of these.

and the Clebsch-Gordan reduction of finite tensor products.

6 Unitary irreducible representations of iSL(2,C)
The Lie group iSL(2,C) is the simply connected covering group of the connected
part of the inhomogeneous Lorentz group, known to physicists as the Poincaré
group. The Poincaré group together with the discrete, homegeneous inversions
for space, time, and total reflection is called the extended Poincaré group. The
homogenous part of iSL(2,C) is the set of unimodular 2×2 matrices, SL(2, C);
and the homogeneous part of the Poincaré group is the set of proper, orthochroous
Lorentz transformations, L↑

+.
The group manifolds for L↑

+ and SL(2, C) are, respectively,

L =
{

Λ ∈ GL(4, R) ∶ ΛTGΛ = I, Λ00 > 0
}

(1a)
(1b)

the Poincaré group

6.1 nonzero mass

6.2 zero mass

7 Fock representations of iSL(2,C)
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7.1 with mass gap

7.2 without mass gap

8 Physical spectrum representations of iSL(2,C)
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