Lorentz Force for a Continuous Charge*

David N. Williams
Randall Laboratory of Physics
University of Michigan
Ann Arbor, MI 48109-1040

February 10. 2013

Contents

1 Classical electrodynamics 1
2 Retarded and advanced kinematics 2
3 Liénard-Wiechert potentials 3
4 Lorentz force body density 4

This note describes our notation and conventions for the Lorentz force exerted by a continuous charge distribution on itself.

1 Classical electrodynamics

We use Jackson's special relativity and Gaussian unit conventions:

$$
\begin{align*}
\operatorname{sig} & =(+---) \quad \mu=0,1,2,3 \tag{1.1}\\
x^{\mu} & =(c t, \boldsymbol{x}) \quad \partial_{\mu}=\left(\frac{\partial}{\partial c t}, \boldsymbol{\nabla}\right) \tag{1.2}\\
j^{\mu} & =(c \rho, \boldsymbol{j}) \quad A^{\mu}=(\phi, \boldsymbol{A}) \tag{1.3}\\
\partial \cdot F & =\frac{4 \pi}{c} j \quad \partial \cdot j=0 \quad \partial \cdot F^{\mathrm{D}}=0 \tag{1.4}\\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\mu} A_{\mu} \equiv[\partial A]_{\mu \nu} \quad \partial \cdot A=0 \text { (Lorentz gauge) } \tag{1.5}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
\square A & \equiv \partial \cdot \partial A=\frac{4 \pi}{c} j \tag{1.6}\\
\Theta & =\frac{1}{4 \pi}\left(F \cdot F+\frac{1}{4} g F: F\right) \quad \partial \cdot \Theta=-\frac{1}{c} F \cdot j \tag{1.7}\\
f & =\frac{1}{c} F \cdot j \quad \text { (Lorentz force density) } \tag{1.8}\\
\frac{\mathrm{d} P_{Q}}{\mathrm{~d} t} & =\int f(x) \mathrm{d}^{3} x \quad \text { (Lorentz force) } \quad Q=\int \rho(x) \mathrm{d}^{3} x \tag{1.9}
\end{align*}
$$
\]

In Eq. (1.9), P is the total four-momentum of the charge distribution.

2 Retarded and advanced kinematics

Retarded and advanced sources for field point x.
Four-vector spacetime points on the world lines of charge elements are parametrized by proper time τ plus three, invariant spatial coordinates $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$, corresponding to three-positions in a reference body. We also call $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ body coordinates. We use $\boldsymbol{\alpha}$ for spacetime points $x=y(\tau, \boldsymbol{\alpha})$ which experience the electromagnetic field, also called field points, and $\boldsymbol{\beta}$ for retarded or advanced spacetime source points $y\left(\tau_{\mathrm{R}, \mathrm{A}}, \boldsymbol{\beta}\right)$. We use R for the displacement from a source to a field point.

$$
\begin{align*}
& x=[c t, \boldsymbol{x}(t, \boldsymbol{\alpha})]=y(\tau, \boldsymbol{\alpha}) \tag{2.1}\\
& R=x-y\left(\tau^{\prime}, \boldsymbol{\beta}\right)=y(\tau, \boldsymbol{\alpha})-y\left(\tau^{\prime}, \boldsymbol{\beta}\right) \tag{2.2}
\end{align*}
$$

Here are the two solutions of the lightcone condition $R \cdot R=0$ for τ^{\prime} and R, along with the corresponding retarded and advanced four-velocity u, fouracceleration a, and four-lurch l :

$$
\begin{align*}
\tau_{\mathrm{R}, \mathrm{~A}} & =\tau_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta})=\tau_{\mathrm{R}, \mathrm{~A}}[y(\tau, \boldsymbol{\alpha}), \boldsymbol{\beta}] \tag{2.3}\\
R_{\mathrm{R}, \mathrm{~A}} & =R_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta})=y(\tau, \boldsymbol{\alpha})-y\left(\tau_{\mathrm{R}, \mathrm{~A}}, \boldsymbol{\beta}\right) \tag{2.4}\\
u_{\mathrm{R}, \mathrm{~A}} & =u_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta})=\frac{\partial y}{\partial \tau}\left(\tau_{\mathrm{R}, \mathrm{~A}}, \boldsymbol{\beta}\right) \tag{2.5}\\
a_{\mathrm{R}, \mathrm{~A}} & =a_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta})=\frac{\partial u}{\partial \tau}\left(\tau_{\mathrm{R}, \mathrm{~A}}, \boldsymbol{\beta}\right) \tag{2.6}\\
l_{\mathrm{R}, \mathrm{~A}} & =l_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta})=\frac{\partial a}{\partial \tau}\left(\tau_{\mathrm{R}, \mathrm{~A}}, \boldsymbol{\beta}\right) \tag{2.7}
\end{align*}
$$

We use the term lurch instead of jerk for \dot{a} because we want to use j for current.
Let J be the Jacobian of the transformation $\boldsymbol{\alpha} \rightarrow \boldsymbol{x}(t, \boldsymbol{\alpha})$ at time t. Then

$$
\begin{align*}
\mathrm{d}^{3} x & =J \mathrm{~d}^{3} \alpha \tag{2.8}\\
\mathrm{~d} q & =\rho(x) \mathrm{d}^{3} x=\rho_{0}(\boldsymbol{\alpha}) \mathrm{d}^{3} \alpha \quad \rho(x)=\frac{\rho_{0}}{J} \quad Q=\int \mathrm{d} q \tag{2.9}\\
j(x) & =\frac{\rho_{0}}{J \gamma} u(\tau, \boldsymbol{\alpha}) \quad \gamma \equiv u^{0}(\tau, \boldsymbol{\alpha})=\gamma(x) \tag{2.10}
\end{align*}
$$

Note that point charge formulas for derivatives with respect to x of $\tau_{\mathrm{R}, \mathrm{A}}, R_{\mathrm{R}, \mathrm{A}}$, $u_{\mathrm{R}, \mathrm{A}}$, etc., also hold for continuous charge, with the understanding that $\partial / \partial x$ is taken at constant source reference point $\boldsymbol{\beta}$.

3 Liénard-Wiechert potentials

In the following, blackboard bold symbols are used for reference body volume densities.

$$
\begin{align*}
A_{\mathrm{R}, \mathrm{~A}} & =A_{\mathrm{R}, \mathrm{~A}}(x)=A_{\mathrm{R}, \mathrm{~A}}[y(\tau, \boldsymbol{\alpha})] \tag{3.1}\\
& =\int \mathrm{d}^{3} \beta \rho_{0}(\boldsymbol{\beta}) \frac{u_{\mathrm{R}, \mathrm{~A}}}{\left|R_{\mathrm{R}, \mathrm{~A}} \cdot u_{\mathrm{R}, \mathrm{~A}}\right|}=\int \mathrm{d}^{3} \beta \rho_{0}(\boldsymbol{\beta}) \mathbb{A}_{\mathrm{R}, \mathrm{~A}} \tag{3.2}\\
\mathbb{A}_{\mathrm{R}, \mathrm{~A}} & =\mathbb{A}_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta}) \quad \text { (vector potential body density) } \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
F_{\mathrm{R}, \mathrm{~A}} & =F_{\mathrm{R}, \mathrm{~A}}(x)=\int \mathrm{d}^{3} \beta \rho_{0}(\boldsymbol{\beta}) \mathbb{F}_{\mathrm{R}, \mathrm{~A}} \tag{3.4}\\
\mathbb{F}_{\mathrm{R}, \mathrm{~A}} & =\mathbb{F}_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta})=\left[\partial \mathbb{A}_{\mathrm{R}, \mathrm{~A}}\right](x, \boldsymbol{\beta}) \tag{3.5}
\end{align*}
$$

4 Lorentz force body density

Now we call $f(x)$ the Lorentz force field, and write it in terms of a Lorentz force body density, $f(x, \boldsymbol{\beta})$.

$$
\begin{align*}
f_{\mathrm{R}, \mathrm{~A}}(x) & =\int \mathrm{d}^{3} \boldsymbol{\beta} \rho_{0}(\boldsymbol{\beta}) \mathbb{f}_{\mathrm{R}, \mathrm{~A}} \tag{4.1}\\
\mathbb{f}_{\mathrm{R}, \mathrm{~A}} & =\mathbb{f}_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta})=\frac{\mathbb{F}_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta}) \cdot j(x)}{c}=\frac{\mathbb{F}_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta}) \cdot \rho_{0}(\boldsymbol{\alpha}) u(\tau, \boldsymbol{\alpha})}{J \gamma c} \tag{4.2}
\end{align*}
$$

$$
\begin{equation*}
f_{\mathrm{R}, \mathrm{~A}}(x)=\frac{\rho_{0}(\boldsymbol{\alpha})}{\boldsymbol{J} \gamma c} \int \mathrm{~d}^{3} \beta \rho_{0}(\boldsymbol{\beta}) \mathbb{F}_{\mathrm{R}, \mathrm{~A}}(x, \boldsymbol{\beta}) \cdot u(\tau, \boldsymbol{\alpha}) \tag{4.3}
\end{equation*}
$$

[^0]: *This document was started on August 6, 2012.

