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1 Characteristics of Waves

• Typically, a wave is a disturbance that propagates in a medium, which pro-

vides whatever it is that “waves”. It is best to think in terms of a medium

for an intuitive grounding. But the two important kinds of waves in this

course are light waves (special relativity) and probability waves (quantum

mechanics), neither of which propagates in a conventional medium.

• Waves undergo interference and diffraction (e.g., bending around corners).

The engine for these phenomena is superposition.

• Waves tend to be spread out in space (or in the medium).

• The energy/intensity carried by waves is proportional to the square of what-

ever waves (at least for linear waves).

• Waves obey a wave equation. Although a somewhat nonintuitive mathe-

matical abstraction (a partial differential equation),1 it really packages many

properties of waves in a very convenient form; and many kinds of linear

waves obey the same wave equation, called “the” wave equation—so if you

learn about one of those kinds you know about them all.

Actually a very large fraction of the waves of interest in physics are linear

waves, the meaning of which we review later.

1Don’t worry—this isn’t a course in partial differential equations!
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2 Characteristics of Particles

Now let’s contrast the properties of waves with those of particles. Here we have in

mind classical, not quantum particles. This partly points up the fact that particle

notions were historically more intuitive than wave notions, and partly anticipates

the “paradox” of wave-particle duality in quantum mechanics.

• Typically particles don’t need a medium, and travel on well-defined orbits.

• Particles don’t interfere or bend around corners.

• Particles are confined in space. Indeed, the natural abstraction in classical

physics is to build matter out of point particles.

• The energy carried by particles is typically kinetic energy plus energy (often

potential energy) for the interaction of some particle property, such as mass

or charge, with a field, such as the gravitational field or an electric field.

• The motion of a particle is determined by equations of motion (ordinary

differential equations) founded on Newton’s law f = ma.

3 Propagation of Shapes

For concreteness, think of a moving pulse on a string stretched along the horizon-

tal, x-direction, with displacements along the vertical, y-direction. The physical

particles in the string actually move only in the vertical direction, but the shape

of the pulse appears to move horizontally. To be concrete, we choose the pulse to

have the particular shape plotted in the figure, called a Gaussian:

y = f (x) = C exp

(

−
x2

a2

)

, C, a = const.
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O x (cm)

y  (cm)

Here, x and y have the dimensions of length (cm).

Question: What is the dimension of the constant a?

Answer: Length, because the arguments of the standard mathematical functions

are dimensionless.

Question: What feature of the curve is associated with the length a?

Answer: Its width.

Question: What is the dimension of the constant C > 0?

Answer: Length, the maximum height, at x = 0.

Now translate the shape a distance b > 0 to the right:

y = f (x − b) = C exp

(

−
(x − b)2

a2

)

O x (cm)b

y  (cm)
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To get the shape moving to the right, we write the translation as proportional

to time t (for positive time):

b = vt , choose v > 0 , dim t = sec

⇒ dim v = cm/sec (speed)

y = f (x − vt) = C exp

(

−
(x − vt)2

a2

)

To keep track of where the shape is, follow some feature, such as the maximum:

y = f (0) = C ⇒ x − vt = 0

x = vt position of max moving to the right

To move the shape to the left, put

y = f (x + vt) = C exp

(

−
(x + vt)2

a2

)

Now we can follow y = C = f (0) by putting

x + vt = 0 ⇒ x = −vt position of max moving to the left

We could follow any other point on the curve. For example, there are two

points ±x1 where f (±x1) = C∕3. They all move to the right (or to the left) with

the same speed v:

x1 = x − vt ⇒ x = vt + x1 x still moves to the right

Elaborating the notation: The waves moving to the right or left above are spe-

cial cases of the more general situation that the spatial shapes of waves change with

time. We indicate that mathematically by writing the displacement as a function

of two variables, x and t:

y = y(x, t) y is whatever waves

plot function of x at fixed t: “snapshot”

plot function of t at fixed x: waving at x as time passes
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4 Superposition and Interference

For linear waves (the only kind we deal with in this course), if y1(x, t) and y2(x, t)

are waves, then so is

y(x, t) = y1(x, t) + y2(x, t)

which is called the superposition of y1 and y2. Linear waves add algebraically.

This simple law is what gives rise to the fact that waves pass through each other

without affecting each other.

Suppose y1 and y2 are waves with shapes like the Gaussian we used before,

with y1 traveling to the right, but y2 traveling to the left and upside down. Let’s

say the snapshot of the superposition

y(x, t) = y1(x − vt) + y2(x + vt)

at time t looks like the plot below:

x 

y 

y ≈ y1

y ≈ y2

y = y1 + y2

At some time t0 later, the two shapes will be exactly opposite:

y1(x, t0) = −y2(x, t0) ⇒ y(x, t0) = 0

At t = t0, the snapshot is
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x 

y 

y = y1 + y2 ≡ 0

time t=t0  

Somewhat later still, say at t = t1, the waves have moved through each other, and

the snapshot is

x 

time t=t1  y 

y ≈ y2

y ≈ y1y = y1 + y2

If the waves y1 and y2 have shapes that are only approximately upside down

from each other, their superposition will still interfere destructively when the shapes

are at the same position, but won’t exactly cancel.

5 Wave Speed in Strings

A medium often supports waves with only a single wave speed, depending on the

properties of the medium. That is true for strings stretched with the same tension

T everywhere (true for massless strings), and the same mass per unit length �.2

2This is true for light in a vacuum, but not for light in glass, where the index of refraction and

the wave speed vary with the frequency of the light.
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We reproduce here the standard simple argument to find the wave speed in strings

where the transverse displacements are small.

We assume the wave speed v for a small amplitude pulse moving to the right

on the string is the same throughout the string. Suppose a snapshot of the moving

shape looks like this:

x 

y 

v

Recall that although the shape moves to the right, the particles of the string do

not—they only move up or down. For convenience, we look at a small length of

the string at the top of the pulse, and we put ourselves in the inertial frame in which

the shape is at rest. In this frame the element of the string at the top of the pulse has

not only a vertical motion, but is also moving to the left with speed v, as indicated

below:

x' 

y' 

     shape at rest

v

According to the principle of Gallilean relativity, the laws of physics are the

same in all inertial (unaccelerated) frames, so we can apply the usual force laws to

figure things out. The small segment of string we are looking at is very nearly the
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arc of a circle, with a radius we’ll call R. The geometry is shown in the magnified

sketch of the string segment below:

R  

 θ 
θ  is actually
small

 T T 

θ   θ 

v = vtang

Because the segment is chosen to be small, and the vertical displacement of

the string is assumed to be small, the angle � (in radians) between the ends of the

string segment and the horizontal is small. Since the tangential component of the

velocity of the segment in our frame is the same as minus the wave speed v, the

centripetal acceleration and radial component Fr of the force on it are related by

mv2

R
= Fr = 2T sin �

where m is the mass of the small string segment. In terms of the mass per unit

length �, the mass is m = � × 2�R, so

�2�Rv2

R
= 2T sin � ≈ 2T �

⇒ v =

√
T

�

So for a given tension T , a less dense string has faster wave speed, and for a given

density �, a tauter string has faster wave speed.

6 Reflection and Transmission

Typically when a wave travels through a medium and meets the boundary of an-

other medium, it is partially transmitted and partially reflected. The reflected wave
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does or does not undergo a phase change of 180◦ (� radians) depending on the me-

dia on either side of the boundary. To describe this situation for strings, we first

consider two cases where there is no transmission, only reflection.

In the first case, we suppose that one end of the string is tied to a wall, or just

something heavy, as shown below. When the shape incident from the left reaches

the wall, the tension in the string tends to pull upward on the wall. From Newton’s

third law, the reaction force exerted by the wall on the string is then downward,

making the reflected shape inverted.

end tied  

incident

reflected

In the second case, the end of the string is tied to a frictionless ring, free to

move up and down on a rod, as shown below. This time a pulse incident from

the left just moves the ring upward when it reaches the wall, making the reflected

shape also upward, not inverted.
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end slides  
up and down  

incident

reflected

Next, we replace the wall by another piece of string, with the same tension in

both strings. In the first case, shown below, the new string on the right has bigger

mass per unit length compared to the string on the left. When a shape incident from

the left reaches the boundary between the two strings, part of the energy goes into

a transmitted wave, and part into a reflected wave, which is inverted, as with the

string tied to a wall or something heavy.

 incident

 reflected

transmitted 

In the second case, as shown below, the string with the incident wave on the

left is heavy and the string on the right is light. A shape hitting the boundary

between the strings from the left finds it easy to lift the string on the right, like the
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frictionless ring above, so the reflected wave is not inverted, and it is easy to make

a transmitted wave in the light string on the right.

 incident

 reflected transmitted 

We shall see later that probability waves in quantum mechanics also reflect and

transmit when they are incident on a “potential barrier”.

7 Harmonic (Periodic) Waves

We have indicated that waves can have any shape, but there is a special set of

shapes that are basic for our intuition, namely, the sinusoidal shapes, with definite

frequency and wavelength. You will learn in more advanced courses that all linear

waves can be written as superpositions of sinusoidal waves (Fourier series and

integrals), and their properties are the foundation for the way we think about waves.

Here is a snapshot of a sinusoidal wave with wavelength � at time t = 0:

y(x, 0) = A sin
2�x

�

x 

y 

λ 

snapshot 
at time t=0 
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Such waves are periodic, that is, they repeat when their phase changes by ±2�

radians, in this case, when x changes by ±�. We take this wave to be moving to

the right with wave speed v, so at time t a little later its snapshot is:

y(x, t) = A sin
2�

�
(x − vt)

x 

y 

λ vt

snapshot 
at time t 

7.1 Wavelength, Period, Frequency

The sinusoidal waves above have been written in terms of wavelength � and wave

speed v. The period T (not to be confused with string tension), and frequency f ,

are also convenient paramaters. We summarize them here:

wavelength �: The distance in which the phase changes by ±2� at fixed time t.

period T : The time in which the phase changes by ±2� at fixed position x.

2�

�
vT = 2� , T =

�

v

frequency f : The number of complete vibrations (cycles) per unit time at fixed

position x (e.g., the number of times a crest passes by x in one second).

f =
1

T
=
v

�
, dimf = sec−1 ≡ Hz , v = f�

Putting in the period T gives

y(x, t) = A sin 2�
(
x

�
−
t

T

)
,

which makes it clear that the wave is periodic when x → x ± � or t → t ± T .
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7.2 Wavenumber, Angular Frequency

It is traditional and convenient to introduce another notation:

wavenumber k:

k =
2�

�
, dim k =

1

length
= m−1

angular frequency !:

! = 2�f =
2�

T
, dim! =

1

time
= s−1

In this notation

y = A sin(kx − !t) .

The phase in radians is now expressed as kx−!t. In this language the wave speed

is

v = �f =
!

k

7.3 Phase Constant

To compare and superpose sinusoidal waves of the same wavelength and frequency,

we need one more parameter, the phase constant�, which adjusts the phase origin:

y(x, t) = A sin(kx − !t − �)

For example, if we choose the phase constant to correspond to 90◦, � = �∕2:

y = A

[
sin(kx − !t) cos

�

2
− cos(kx − !t) sin

�

2

]

= −A cos(kx − !t)

So sinusoidal waves are also “cosinusoidal”, when the appropriate phase constant

is put in. The plots below show that this calculation agrees with our discussion of

the translation of shapes.
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α   

f f = sin α 

π 2π 

α   

f f = sin(α –π /2)

π 2π   

π /2

7.4 Velocity and Acceleration of Displacement

Consider a sinusoidal string wave with transverse displacement3

y = A sin(kx − !t) .

According to our previous discussion, this is a wave traveling to the right, because

it is a function of x − vt; we just have to factor out the k to see what v is. It is a

basic fact that the wave speed v = !∕k is different from the speed with which the

particles of the string move. In particular, the wave speed is constant, while the

transverse velocity is not.

The calculation is not difficult:

vy =
dy

dt

|
|
|
|const x

=
)y

)t
= −!A cos(kx − !t)

ay =
d2y

dt2

||
|
|
|const x

=
dvy

dt

||
|
|
|const x

=
)2y

)t2
=
)vy

)t

= −!2A sin(kx − !t)

Note that the displacement y and transverse velocity vy are 90◦ out of phase.

Note also that at each fixed x, the displacement obeys the differential equation for

simple harmonic motion with angular frequency !.

3We leave it as an exercise for the student to check that the discussion in this section is just as

easy with a nonzero phase constant �.
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8 Energy Transmitted by Harmonic Waves

For a particle in simple harmonic motion under a restoring force F = −ky, where

k is the “spring constant”, the energy is

E =
1

2
mv2

y
+

1

2
ky2 , ! =

√
k

m

⇒ E =
1

2
mv2

y
+

1

2
m!2y2 = const.

Since the velocity is vy = 0 at maximum displacement y = A, and the energy is

constant, we find

E =
1

2
m!2A2

Although the particles on the string are not connected to springs, their transverse

displacements y do undergo simple harmonic motion; and we take over this ex-

pression for the energy of each particle.

We also assume that the displacements are small, so that the length of string

in a single wavelength � is approximately the same as the wavelength (in fact the

piece of string is a little longer). Then the energy in one wavelength of string is

the sum of energies of each of its particles, with total mass

m = �� , � =
mass

length

Thus we find the energy in one wavelength of string

E =
1

2
��!2A2 .

λ 

For a wave moving to the right, all of this energy leaves the box of length � indi-

cated above in one period T , so the rate at which energy is transported to the right
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is

P =

1

2
��!2A2

T
=

1

2
��f!2A2

P =
1

2
�v!2A2 , power =

energy

time
, dimP = watts

The fact that the transmitted power is proportional to the square of the frequency

and to the square of the amplitude of whatever waves is generic for linear waves,

and not limited to transverse waves on strings.

9 The Wave Equation

At the very beginning of the course, we indicated that “the” wave equation pack-

ages many properties of waves in a very convenient form. We certainly are not

going to derive these properties in any systematic way from the wave equation,

but there are several things that are both easy and useful that we can say about it.

First, let’s derive it in the case of waves on strings. We assume as usual that the

string is stretched along the x-axis, with the same tension T everywhere. We also

assume that the transverse displacements are small—strictly speaking, the wave

equation is only true for strings in this approximation. So we focus on the small

segment of string shown in the snapshot at a fixed time t below.

y 

x T

 Aθ 1  

T  

B

θ 2  

  arc length ∆s ≈ ∆x

  angles θ 1 and θ 2 are small

∆x

Since the displacement y is small, the shape of the wave is nearly flat, and the

angles �1 and �2 between the tangents to the string at the ends and the horizontal

are small; so we can approximate sin � ≈ tan � to get the vertical component of
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the force on the segment, which is entirely due to the tension if the string is light:

Fy = T sin �2 − T sin �1

≈ T tan �2 − T tan �1

= T
)y

)x

|
|
||B

− T
)y

)x

|
|
||A

In the last step, we used the fact that tan � is the slope of the curve, which is also

)y∕)x, at fixed time.

Next we use Newton’s force law, and the fact that for small displacements the

length of the segment is nearly the same as the horizontal component of the dis-

placement between points A and B, Δs ≈ Δx:

Fy = may = �Δx
)2y

)t2

= T

(
)y

)x

|
|
|
|B

−
)y

)x

|
|
|
|A

)

⇒
�

T

)2y

)t2
=

)y

)x

|
|
|
|B

−
)y

)x

|
|
|
|A

Δx
>> Δx→ 0 >

)2y

)x2

We put in v =
√
T ∕�,

)2y

)x2
−

1

v2

)2y

)t2
= 0 ,

and finally we replace y by  to represent a generic waving quantity to get “the”

wave equation in one dimension

)2 

)x2
−

1

v2

)2 

)t2
= 0

9.1 Linearity

If  1 and  2 are solutions of the wave equation, then

)2 1

)x2
−

1

v2

)2 1

)t2

+
)2 2

)x2
−

1

v2

)2 2

)t2
= 0 =

)2( 1 +  2)

)x2
−

1

v2

)2( 1 +  2)

)t2

⇒  1 +  2 is a solution.

18



Clearly we could have taken differences here, and also general linear combinations

with constants c1 and c2 in front of  1 and  2. This is the mathematical statement

that the wave equation is linear, and is the root of interference and diffraction phe-

nomena for linear waves.

9.2 General Solution

Note that any function of the form  (x, t) = f (x − vt) is a solution of the wave

equation:

)f

)x
= f ′ ,

)2f

)x2
= f ′′ ,

)f

)t
= −vf ′ ,

)2f

)t2
= (−v)2f ′′ = v2f ′′

⇒
)2f

)x2
−

1

v2

)2f

)t2
= f ′′ −

1

v2
v2f ′′ = 0

Exercise: Verify that any function of the form  (x, t) = f (x+ vt) is a solution of

the wave equation.

Given the result of the exercise just above, and the linearity of the wave equa-

tion, it follows that any function of the form

 (x, t) = f1(x − vt) + f2(x + vt)

is a solution of the wave equation.

Fact: The general solution of the wave equation in one dimension has the above

form, the sum of an arbitrary wave traveling to the right and an arbitrary

wave traveling to the left.

The mathematical proof is a bit technical, but not hard as those things go. Ig-

noring the technicalities, we sketch the ideas:

• For fixed wavenumber k, sin(kx ± !t) = sink(x ± vt) and cos(kx ± !t) =

cos k(x ± vt) are four “independent” solutions of the wave equation.

• Sums and/or integrals of these functions are also solutions. (Since ! = kv

is fixed when k is given, these may be regarded as sums or integrals over

values of k.)
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• According to the theory of Fourier series and integrals, these independent

solutions are “complete”, that is, any solution of the wave equation can be re-

spresented by their sums and/or integrals. By separately collecting together

the terms with x − vt and x + vt in these sums/integrals, we see that they

have the form

f1(x − vt) + f2(x + vt)

10 Superposition of Harmonic Waves

This section is based on Serway, Physics for Scientists and Engineers, Chapter 18,

§§1-3. We now investigate some basic interference phenomena arising from the

superposition of harmonic waves.

10.1 Interference

First, let’s superpose two waves with the same frequency f , wavelength �, and

amplitude A, but different phase. Note that the wave speed is also the same.

y1 = A sin(kx − !t) , y2 = A sin(kx − !t − �)

y = y1 + y2 = A sin(kx − !t) + A sin(kx − !t − �)

As we recall from alternating current theory4 or elsewhere, even if the ampli-

tudes were different, say A1 and A2, we could write the superposition in the form

y = A′ sin(kx − !t − �′)

where the resultant amplitude A′ and phase �′ can be determined from the vector

diagram:

A

A1

   A2

  φ '
  φ 

4Remember phasors?
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The math is based on the following trigonometric identity:

sin a + sin b = 2 cos
a − b

2
sin

a + b

2

(check it out). Thus

y = 2A cos
�

2
sin

(

kx − !t −
�

2

)

.

Now look what happens when � = ±� (or �∕2 = ±�∕2). We get y = 0

everywhere (all x) and any time (all t). When a cancellation like this occurs at a

spatial point x, we call it destructive interference. In this case we have destructive

intererence at all x. The snapshots at t = 0 below show that it makes sense:

x 

y1 

x 

y2 

x 

y 

result is total destructive interference

y = y1 + y2

Even as the shapes move to the right, they’re always a half wavelength out of step,

and still exactly cancel everywhere.5

5Since it’s tricky (not impossible) to physically do this particular kind of superposition on a

string, we might better look to other kinds of waves for examples, such as sound waves.
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Exercise: Show from the mathematical formula that this destructive interference

result holds when � = 2�(n+
1

2
), where n is any positive or negative integer.

When the phase difference � = 2�n, the two waves are exactly in step, and

we get constructive interference at all positions x. We leave it as an exercise for

the student to draw snapshots analogous to those above, and to verify that the

mathematics also works:

y = 2A cos
n�

2
sin

(
kx − !t −

n�

2

)

= 2A sin(kx − !t)

Sound Wave Examples from Serway: The examples of destructive and con-

structive interface described in the previous section are atypical in that we are

often interested in interference that occurs at a single point, where waves of the

same wavelength and frequency arrive by different paths. In the two examples

from Serway reviewed in the lecture,6 we interfered two sinusoidal waves with

phases

�1 =
2�

�
r1 − !t , �2 =

2�

�
r2 − !t ,

where r1 and r2 were the lengths of the paths traveled by the two waves before they

arrived at the same point, assuming they started out in phase.

What matters then is the phase difference:

Δ� = �1 − �2 =
(
2�

�
r1 − !t

)
−
(
2�

�
r2 − !t

)

=
2�

�

(
r1 − r2

)

Δ� = 2�n (constructive interference)

= 2�(n +
1

2
) (destructive interference)

In terms of path difference, this translates into

r1 − r2 = n� (constructive interference)

r1 − r2 = (n +
1

2
)� (destructive interference)

6One was a speaker emitting waves into a tube that split into two bent tubes, one with a variable

length, then recombined into a single tube at a reciever; and the other was two speakers driven in

phase by the same source, emitting sound waves that interfered at the same point after traveling

along different straight paths.
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The mathematics is essentially the same as before; we superpose

y = A sin �1 + A sin �2 = A sin �1 + A sin(�1 − Δ�)

= 2A cos
Δ�

2
sin

(

kr1 − !t −
Δ�

2

)

10.2 Standing Waves

Coming back to strings, let’s superpose two waves with the same frequency, wave-

length, and amplitude, but traveling in opposite directions, which is even fairly

easy to do on real strings:

y1 = A sin(kx − !t) , y2 = A sin(kx + !t)

y = y1 + y2

= A (sinkx cos!t − cos kx sin!t + sinkx cos!t + cos kx sin!t)

= 2A sinkx cos!t

We know of course that this obeys the wave equation for speed v = !∕k.

Notice that the space and time dependences have factorized. This wave is no

longer going anywhere. Below we show two snapshots, one at time t = 0, and the

other a little later, where 0 < cos!t < 1. Prominent features of the shape such as

the peaks and nodes (places where the wave is zero) do not move to the right or

left. The antinodes (places where the amplitude has maximum magnitude) move

up and down with angular frequency !. Such waves are called standing waves.

x 

y snapshots at 
two times t 

The nodes are determined by sinkx = 0:

kx =
2�

�
x = 0,±�,±2�,⋯ = n�
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x = n
�

2
, n = 0, 1, 2,… (nodes)

They are separated by a half wavelength.

The antinodes are determined by sinkx = ±1:

kx =
2�

�
x = ±

�

2
,±3

�

2
,⋯ = (2n + 1)

�

2

x =
(
n +

1

2

)
�

2
, n = 0, 1, 2,… (antinodes)

They are also separated by a half wavelength.

There is stored energy in the up and down motion, but no transmission of en-

ergy along the string.

10.3 Boundary Conditions and Normal Modes

Standing wave nodes and antinodes play a special role in problems with boundary

conditions. When the ends of a string, say at x = 0 and x = L, are tied down

so they can’t move, they are forced to be nodes. The solutions y(x, t) of the wave

equation for such a problem are said to obey the boundary conditions y(0, t) =

y(L, t) = 0, and the mathematical problem is to find all solutions for 0 ≤ x ≤ L

which obey those boundary conditions. Analogous problems occur in quantum

mechanics.

We already know a lot of solutions from our discussion of nodes in harmonic

standing waves. Let’s classify them by drawing pictures. The first two solutions

are shown below, the trivial solution, with y ≡ 0, and the fundamental solution or

first harmonic, where the first node to the right of x = 0 is at the end, x = L.

L L

L = λ /2
fundamental or 1st harmonic
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The next two are called the second and third harmonics, with one and two

nodes, respectively, between the ends.

L

L = λ 
2nd harmonic

L

L = 3λ /2
3rd harmonic

The pattern is clear. At each step, we fit one more node corresponding to one

more half wavelength between the ends. The rule for the wavelengths and frequen-

cies of the standing waves is

�n =
2L

n
, n = 1, 2,…

fn =
v

�n
=
nv

2L
=

n

2L

√
T

�

Note that the harmonic frequencies go up in equal steps from the fundamental

frequency: fn = nf1. The wavenumbers and angular frequencies are

kn =
2�

�n
=
n�

L
, !n = 2�fn =

n�v

L
=
n�

L

√
T

�

The frequencies fn are called normal mode frequencies, and the corresponding

solutions of the wave equation are called normal mode solutions, or normal modes:

yn = A sinknx cos!nt = A sin
n�

L
x cos

n�v

L
t

The mathematicians tell us that these are in fact all of the solutions, in the sense

that any solution can be written as a superposition of these.

A guitar string is a familiar example of this situation. The dominant tone that

we hear7 when a guitar string is plucked is the fundamental frequency, higher for

7Of course what we hear is a sound wave driven by the string wave and amplified by the guitar

cavity.
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lighter strings under higher tension, lower for heavier strings under less tension.

For a given string, higher fundamental frequencies result when the guitarist effec-

tively shortens the string, keeping the tension fixed, by pressing it against a fret.

The string actually vibrates as a superposition of the fundamental and higher

harmonic overtones; that is, it is a complex standing wave. A basic part of the

reason that the fundamental sounds loudest is that the initial shape of the string

just after it is plucked is close enough to that of the fundamental mode that higher

harmonics have relatively small amplitudes in the complex wave. In the “cultural

example” below,8 we indicate how this happens for the triangle shape, which oc-

curs just after the string is plucked at its middle. (Another effect is that sufficiently

high harmonic frequencies are inaudible to humans.)

Cultural example (the triangle wave): At time t = 0 suppose the shape of the

string is that of the triangle shown below.

x 

y 
L/2  

L/2 L

The function in this snapshot is

y(x, 0) = x , 0 ≤ x ≤
L

2

= L − x ,
L

2
≤ x ≤ L

The Fourier series expansion of this function can be shown to be the infinite sum:

y(x, 0) =
4L

�2

(
1

12
sin

�x

L
−

1

32
sin

3�x

L
+

1

52
sin

5�x

L
−…

)

The solution of the wave equation is then:

y(x, t) =
4L

�2

(
1

1
sin

�x

L
cos

�vt

L
−

1

9
sin

3�x

L
cos

3�vt

L
+

1

25
sin

5�x

L
cos

5�vt

L
−…

)

8We call this a cultural example because the mathematics is beyond the scope of this course,

but it’s easy to understand what the mathematical result means.
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In this case, the second, fourth, sixth, etc., harmonics are missing, and the ampli-

tude of the first contributing overtone (the third harmonic) is down by a factor of 9

from the fundamental, with even more dramatic suppression for higher overtones.
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