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Abstract

We show numerically the existence and stability at coincidence of the nondi-

lute, multi-instanton pair configuration in the (1+ 0)-dimensional, double well

model, defined according to a theory presented elsewhere [1]. This follows up

an earlier proof that the multi-instanton pair is an effective critical point of the

classical action if it exists, and is stable if it is unique [2]. We do not prove nu-

merical uniqueness, but find no indication of nonuniqueness. The coincident pair

action has a minimum at coincidence which is a factor 0.82047 times the dilute

pair action, which is the maximum, and we find no other local minimum.
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1. Introduction

We present here a numerical study of the kink pair solution for the (1+0)–dimen-

sional classical Euclidean�4 double well field equation (one-dimensional anharmonic

oscillator in quantum mechanics). The multi-instanton formalism is that developed

in [1], for which we proved in [2] that the coincident pair configuration is an effective

critical point of the classical action, if it exists, and is stable if it is unique. Further

references may be found in those works, to which this paper is a sequel.

We demonstrate the numerical existence of a family of pair solutions parametrized

by the kink-antikink separation; and while we do not demonstrate numerical unique-

ness, we do find the coincident pair (zero separation) to be stable. It is the only local

minimum of the action evaluated on the pair solutions; considered as a function of the

pair separation, the action increases monotonically to its asymptotic maximum value

at the dilute pair (far separated) solution, which is of course twice the single instanton

action.

We have not actually checked that our numerical solutions do not obey the zero

mode orthogonality constraint for instanton number 2n with n > 1; but that seems

clear from the structure of the curves presented in Sect. 4, given the smooth, positive

pulse shape of the zero mode function.

In Sect. 2, we describe our parametrization of the problem for numerical analysis;

and in Sect. 3 we describe the program algorithms and implementation.

Finally, in Sect. 4 we present plots of the results.

Acknowledgements. It is a pleasure to thank Leonard Sander for introducing me to

the simplex method of minimization, and for supplying software to implement it.

2. Parametrization

The double well classical field equation with source J is

−�̈ − �2� + ��3 = J , �, �2 > 0 . (2.1)

We scale this to dimensionless units by defining

�′(t′) ≡
√
�

�
�(t) , t′ ≡ �√

2
t , J ′(t′) ≡ 2

√
�

�3
J (t) . (2.2)
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The action becomes

S(�) = ∫
∞

−∞

[
1

2
�̇2 +

�

4

(
�2 −

�2

�

)2
]

dt

=
�3

√
2�

∫
∞

−∞

[
1

2
�̇′2 +

1

2

(
�′2 − 1

)2]
dt′

≡ �3

√
2�

S′(�′) .

(2.3)

From now on we suppress primes and write

−�̈ − 2� + 2�3 = J , S =
1

2 ∫
∞

−∞

[
�̇2 +

(
�2 − 1

)2]
dt . (2.4)

The one-kink solution located at t = s is

�s(t) = tanh(t − s) , S(�s) = 4∕3 ; (2.5)

and the corresonding zero mode is

�s(t) = sech2(t − s) . (2.6)

The nondilute kink pair with positive, finite action boundary conditions, located at

s1, s2, is the solution �s1,s2 of (2.1) with source

J (t) = �1 �
s1 (t) + �2 �

s2(t) , (2.7)

with the Lagrange multipliers �1, �2 determined by the constraints

⟨�s1,s2 , �s1⟩ = ⟨�s1,s2 , �s2⟩ = 0 , (2.8)

and with boundary conditions�s1,s2(±∞) = 1. Because of time translation invariance,

it is sufficient to consider centered pairs with s1 = −s2. If the solution is unique, the

reflection invariance of (2.4) implies that the pair solution is an even function. We

consider only that case, and write

�s
+|(t) ≡ �s,−s(t) . (2.9)

The zero mode source may also be taken as even:

J = �+ �s+ ,

�s+(t) ≡ �s(t) + �−s(t)

2
.

(2.10)

The entire problem may now be restricted to the interval 0 ≤ t < ∞. Then only

one constraint is required. For future reference, we define the constraint function and

action at finite time:

Cs(T ) ≡ ∫
T

0

�s
+�

s
+ dt , Ss(T ) ≡ 1

4 ∫
T

0

[
�̇s 2 +

(
�s 2 − 1

)]
dt . (2.11)

The constraint is then Cs(∞) = 0, and the action is S = Ss(∞).

We mostly suppress the kink position label s in what follows.
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3. Algorithm and Implementation

The problem of solving the field equation (2.4), including constraints, for the even

pair configuration on the interval 0 ≤ t < ∞ can be formulated in the following way.

First, we write the system, including the evaluation of the action, as a four–dimen-

sional, time-dependent vector,

y =

⎛⎜⎜⎜⎝

y1
y2
y3
y4

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

�+

�̇+

C

S

⎞⎟⎟⎟⎠
, (3.1)

the components of which obey the first-order differential equations:

ẏ1 = �̇+ ,

ẏ2 = �̈+ = 2
(
�2
+ − 1

)
�+ − �+�+ ,

ẏ3 = Ċ = �+ �+ ,

ẏ4 = Ṡ =
[
�̇2
+ +

(
�2
+ − 1

)]
∕4 .

(3.2)

The initial and final values for the vector differential equation at t = 0 and t = ∞ are

y(0) =

⎛⎜⎜⎜⎝

�+(0)

0

0

0

⎞⎟⎟⎟⎠
, (3.3)

y(∞) =

⎛⎜⎜⎜⎝

1

0

0

S(∞)

⎞⎟⎟⎟⎠
. (3.4)

The final value of the componenty4 = S(t) is not actually constrained; it just integrates

to whatever the action S(∞) is. It is a major output of the calculation.

To handle the final value problem, we introduce an implicit parameter T∞, which

is a finite approximation to t = ∞, and which is kept fixed in the calculation for a given

pair separation 2s. Typically T∞ is several kink widths larger than the rightmost kink

position s. In our dimensionless units, one kink width is about unity, corresponding to

the width of | tanh t| at half maximum. At t = T∞ we define a norm N∞ by

N2
∞ = w1

(
y1 − 1

)2
+w2 y

2
2
+w3 y

2
3
+w4 y

2
4
, (3.5)

where the positive weights wi are fixed input parameters to the calculation, to be ad-

justed by hand to optimize the numerical convergence of the minimization procedure.1

The problem is then to minimize

N∞ = N∞

[
�+(0), �+

]
, (3.6)

1Although included in the program, the weight w4 of the action component was actually set to zero in

all runs.
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considered as a function of the initial value �+(0) and the source coefficient �+. The

numerical procedure is to integrate the differential equations from t = 0 to t = T∞ for

given �+(0) and �+, varying those two parameters until N∞ falls within a prescribed

tolerance of a minimum.2

As for implementation, the program was coded in double precision Fortran, using

differential equations subroutines maintained by the University of Michigan Comput-

ing Center, based on the Gear [3] method.3 The simplex method [4] was used for the

minimization.4

Finding starting values for a given kink separation that would lead to a convergent

simplex minimization was sensitive, and required a certain amount of trial and error.

Our basic approach was to work inward from the far separated to the coincident pair,

attempting to use the results of one minimization as starting values for the next. Once

found, starting values that lead to convergent minimization typically required 70-100

iterations. The calculation would have been quite tedious on a less than main frame

equivalent computer, and interactiveness would have been nonexistent.

We chose T∞ = s + 8, about eight kink widths larger than the rightmost kink

position. Our results for the action were not sensitive, at more than five significant

figures, to increasing this number; and the agreement with the exact action in the case

of far separated kinks (2s > 8) was considerably better than five figures. The typical

weights in the norm (3.6) were

w1 = 10 , w2 = 1 , w3 = 20 , w4 = 0 , (3.7)

with typical values of the norm better than

N∞ ≤ 10−4 . (3.8)

4. Plots

At the end of this section, we show a sampling of plots of the nondilute pair solution

for several separations, and a plot of the kink pair action as a function of separation.

The plots were done with Timothy van Zandt’s PSTricks package for LATEX.

The pair solutions are shown in Figs. 1 and 2, beginning with the coincident pair

(separation 2s = 0) in the uppermost plot of Fig. 1, and ending with a far-separated pair

in the last plot of Fig. 2. For comparison, we also show the corresponding approximate

pair configuration tanh(t − s) tanh(t + s), the dashed curve on each plot.

The coincident pair shows a significant deepening compared to the approximate

pair configuration, but what is perhaps reassuring is that the approximate configuration

is as good as it is. By the time the pair separation has reached 2s = 4, about four kink

widths, the topmost curve in Fig. 2, the approximate pair solution nearly coincides

with the exact solution, while the action at S = 2.6614 agrees with the dilute pair

value S = 8∕3 to three significant figures. The approximate and exact solutions are

2Actually zero in our case, where we put the weight of the action component to zero.
3The subroutine source dates from 1975, and was initially provided by the National Energy Software

Center.
4Fortran source for the simplex subroutine was supplied by Leonard Sander.
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visually indistinguishable at the separation 2s = 5.2, in the middle graph of Fig. 2,

where the action agrees with the dilute pair to four figures.

Finally, Fig. 3 shows the action as a function of pair separation, collected from a

number of runs like those shown in Figs. 1 and 2. The coincident pair is clearly the

minimum, and the only local minimum. We believe our numbers for the action to about

five significant figures, possibly better. The attraction of the kink pair makes the pair

action stable at coincidence,

S(0) = 2.1879 = 0.82047S(∞) , (4.1)

about 0.8 times the dilute pair value. As we explained in [2], the systematics of this

effect on the instanton gas remains to be elucidated, but it is clearly a priori as large

as dilute pair effects which are traditionally included.
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Kink Pair Solutions
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Figure 1: Numerical solutions for symmetrically located, nondilute kink pairs at di-

mensionless separations 0.0, 0.4, and 1.2, respectively, plotted for positive t only. The

functions are even in t. For comparison, the dotted curves represent the corresponding

dilute gas configurations, valid only at large separations. The action S in the upper

right corner of each plot is that of the nondilute solution.
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Kink Pair Solutions
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Figure 2: The same as Fig. 1, but with separations 4.0, 4.4, and 6.4, respectively.

Note that the separations are large enough in all cases that the approximate dilute gas

configurations are nearly the same as the exact solutions.

7



0 1 2 3 4 5

2.0

2.5

3.0

Kink Pair Action

a
ct

io
n
S

pair separation

S = 2.666667

S = 2.187924

Figure 3: The actionS for nondilute pair solutions in dimensionless units as a function

of kink separation, twice the rightmost kink position in Figs. 1 and 2. This plot is based

on a sample of solutions at 17 separations.
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