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Abstract

Weconsider the standard nonrelativistic theory of a continuous, elasticmedium
with finite deformations, according to which the elastic energy is a function only of
the state of strain, and the elastic stress tensor is proportional to the strain gradient
of the elastic energy in appropriate coordinates. We derive a special relativis-
tic, energy-momentum tensor, which yields the standard class of theories in the
nonrelativistic limit, from the requirement that it depend only on the state of de-
formation (including the minimal dependence on velocity consistent with covari-
ance), plus conservation laws. The result agrees with an earlier theory proposed
by B. DeWitt (in “Gravitation: an introduction to current research” (L. Witten,
ed.), pp. 305-318, Wiley, New York, 1962), who generalized the nonrelativistic
Lagrangian to general relativity. The elastic momentum density turns out to be of
order v∕c2, and therefore absent in the non-relativistic theory.
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1. Introduction

Some early, sketchy remarks on the special relativistic version of the stress-energy-
momentum tensor (called the energy-momentum tensor) for a continuous, ideal, elas-
tic medium were given by Pauli [1]. The nonrelativistic theory of elasticity for finite
deformations, including the theory of elastic waves, has undergone considerable de-
velopment since then, which we shall not even begin to trace. A refined mathematical
formalism for nonrelativistic elasticity now appears in standard texts [2], which we
summarize later, in Section 3.

C. B. Rayner [3] has a discussion of elasticity in general relativity, which includes
some references to earlier work. The definitive treatment appears to be the later work
of B. DeWitt [4]. We did not know about DeWitt’s elegant treatment at the time we
did the work in the present paper, having learned of it only recently when we came
across an application of his theory to collapsing stars by Gerlach and Scott [6]. DeWitt
straightforwardly generalizes the nonrelativistic Lagrangian to general relativity, to lay
a foundation for measurements in a larger attempt to quantize gravity. We very much
recommend his discussion.1

Our treatment arrives at the same answer in the more restricted framework of spe-
cial relativity, by a different method. It is also straightforward, being essentially an
invariance argument based on the requirement that the elastic tensor depend only on
distortion variables, be covariant, and obey the work-energy conservation law. We
present it here in the interest of having an independent treatment, self-contained within
the simpler environment of special relativity.2

We also provide the answer to a question which we were unable to find in the
nonrelativistic literature: what is the momentum density for an elastic medium? The
generalization from the nonrelativistic to the relativistic theory provides the answer to
that question automatically: the elastic momentum density is zero in the nonrelativistic
theory, because it contains a factor v∕c2 in the relativistic theory. That seems not
inconsistent with what one might expect from a quantum picture. Kittel, for example,
gives an argument for zero momentum in all phonons except for the infinite wavelength
mode [7].

We begin in Section 2 by reviewing some notation for the Lagrangian coordinate
description of continuous media. The nonrelativistic model of elastic media with fi-
nite deformations in the version of Green and Zerna [2] is reviewed in Section 3. The
conservation law constraints, both relativistic and nonrelativistic, are reviewed in Sec-
tion 4. In Section 5, we introduce a relativistic description of the state of distortion of
a continuous medium (whether elastic or not) by means of a triad of four-vector dis-
tortion fields, actually a tetrad when the four-velocity is included. Information about
the distortion of aging of body elements due to different proper times is not included.3

Then in Section 6 we derive the parametrization of the relativistic version of the
elastic tensor in terms of an elastic potential energy function, which depends only on

1There is a paper by W. C. Davidon [5] on continuum mechanics in special relativity, which does not
go into elasticity explicitly. He appears not to have been aware of DeWitt’s work.

2We have also completed a companion study of classical, relativistic elastic strings, which may be
submitted for publication later.

3DeWitt [4] had realized this before us.
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elastic moduli and strain invariants, and in terms of the distortion and four-velocity
fields. We show that parametrization to be sufficient to satisfy the relativistic conser-
vation laws, and we make what seems to us a convincing case for the nonexistence of
other solutions.

We conclude in Section 7 with a discussion of the nonrelativistic limit, verifying
in particular that the elastic stress and energy have the correct limits, and that the
momentum density vanishes in that limit.

2. Deformation in Lagrangian Coordinates

Our notation is similar to, but not identical with, that of Green and Zerna [2]. We
assign the Cartesian coordinates

�⃗ = (�1, �2, �3) (1)
to the mass elements of the medium in its undeformed, unmoving, reference state. The
Cartesian three-vector position of eachmass element (unless we state otherwise, “mass
element” means “rest mass element”) at the time t in an inertial frame is given by the
family of motions

x⃗t(�⃗) = x⃗(t, �⃗) , (2)
which we assume to be one-to-one (nonsingular) at fixed t and sufficiently differen-
tiable in t and �⃗. Associated with these motions is the three-vector velocity field

v⃗t(�⃗) = v⃗(t, �⃗) =
)
)t
x⃗(t, �⃗) , (3)

which represents the velocity at time t of the mass element labeled by �⃗. The volume
of an undistorted mass element is then d3�. Corresponding to any given rest mass
density �0(�⃗) in the reference state, we have the rest mass density at time t:

�(t, x⃗) = �0(�⃗) ∕Jt ,

Jt ≡ det
)x⃗t
)�⃗

.
(4)

The rest mass element is
dm = �(t, x⃗) d3x = �0(�⃗) d3� . (5)

The continuity equation follows:
)t� + ∇⃗⋅

(

�v⃗
)

= 0 , (6)
where we use the notation

)t =
)
)t
|

|

|

|x
, ∇⃗ = )

)x⃗
, (7)
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for the partial time derivative holding x⃗ fixed and the usual spatial gradient holding t
fixed. We use the notation

Dt =
)
)t
|

|

|

|�
= )t + v⃗⋅∇⃗ , (8)

for the material time derivative, or time derivative at fixed �⃗, which is the time deriva-
tive appearing in the definition of the velocity field, Eq. (3).

Let e⃗i = e⃗ i, i = 1, 2, 3 , be a constant, right-handed system of orthogonal unit
three-vectors. We use these as Cartesian basis vectors both in the reference body
three-space and in the inertial three-space where themotion occurs. We follow the con-
vention that Latin indices i, j,… refer to inertial space while s, t,… refer to reference
space components,4 with the summation convention for repeated indices. Neighboring
points in the undistorted body at rest are separated by

d�⃗ = d�s e⃗s . (9)
At time t, the image of the separation between neighboring points under the motion is

dx⃗ = x⃗(t, �⃗ + d�⃗) − x⃗(t, �⃗)

= )xi

)�s
d�s e⃗i .

(10)

The Jacobian matrix )xi∕)�s contains all information about the distortion of the
unstrained body volume element d3� into its image d3x; it permits us to construct
any separation dx⃗ of neighboring points of the distorted body from the undistorted
separation d�⃗.

The body coordinates �⃗ can be written at time t in terms of the inertial coordi-
nates x⃗:

�⃗t(x⃗) = �⃗(t, x⃗) , (11)
where

�⃗
(

t, x⃗t(�⃗)
)

= �⃗ . (12)
The body coordinates �⃗t are curvilinear with respect to the inertial coordinates x⃗, andthe vectors

�⃗s ≡
)x⃗
)�s

, s = 1, 2, 3 , (13)
point along the direction of increasing �s, the other components of �⃗ being held fixed,
at a given point x⃗. The lengths of these vectors describe the amount of dilation of the
reference body along the curvilinear �s axes.

The reciprocal vectors are
�⃗ s = ∇⃗�s , �⃗ s ⋅�⃗t = �st . (14)

The elements of length, unstrained and at time t, respectively, are given by:
d�⃗ ⋅d�⃗ = �st d�s d�t = ∇i�⃗ ⋅∇j �⃗ dxi dxj ,

dx⃗⋅dx⃗ = )x⃗
)�s

⋅
)x⃗
)�t

d�s d�t = �ij dxi dxj .
(15)

4The context should distinguish the cases where the subscript t is used to mean time instead.
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The strain tensor is defined by
1
2
(dx⃗⋅dx⃗ − d�⃗ ⋅d�⃗) = st d�s d�t = Γij dxi dxj ,

st =
1
2

(

)x⃗
)�s

⋅
)x⃗
)�t

− �st

)

= 1
2
(�⃗s ⋅�⃗t − �st) ,

Γij =
1
2

(

�ij − ∇i�⃗ ⋅∇j �⃗
)

,

⃖⃗Γ = st �⃗ s �⃗ t = Γij e⃗ i e⃗ j .

(16)

Although the strain tensor at a single point does not contain the full information in the
Jacobian matrix, it determines the curvilinear metric.

For future reference, we note that the quantity

�st = 1
2

(

�st − ∇⃗�s ⋅∇⃗�t
)

= 1
2

(

�st − �⃗ s ⋅�⃗ t
)

(17)

contains exactly the same information as st , because the matrix �⃗ s ⋅ �⃗ t is the inverse
of the matrix �⃗s ⋅�⃗t; and the strain tensor can also be written

⃖⃗Γ = �st �⃗s �⃗t . (18)

3. Nonrelativistic Elastic Stress Tensor

Our convention for the sign of the three-dimensional stress tensor is that
dF⃗ = ⃖⃖⃗S ⋅dA⃗ (19)

is the force exerted by the medium behind the right-hand oriented surface element dA⃗
on the medium just in front of dA⃗. The front side is the side in the direction of dA⃗.

According to the standard theory of an ideal, elastic medium, there are no internal
states other than the state of strain, i.e., no thermodynamic variables such as temper-
ature or pressure play a role. All internal stresses are the result of strain. The elastic
energy per volume is potential energy, a function only of the state of strain and the
body constraints of the form

U (t, x⃗) = F (st, �⃗)∕J . (20)
The explicit dependence on �⃗ in this expression is a generalized description of the
dependence on “elastic moduli,” which are allowed to vary from point to point of the
body. In particular, we may use the explicit �⃗ dependence to define the boundaries
of the medium; for example, if there is no medium outside a bounded region of the
reference space, we demand that F vanish outside that region. Typically, F might
have pieces proportional to various moduli; and the vanishing of F outside the body
could then be handled by letting the moduli go smoothly to zero within some boundary
layer region of arbitrarily small size. But in general, we allow an arbitrary, explicit �⃗
dependence.
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The potential energy hypothesis in Eq. (20), plus the principle of virtual work, or
a standard thermodynamic argument [2], leads to the conclusion that the elastic stress
tensor has the form

⃖⃖⃗S = S ij e⃗ie⃗j = �st �⃗s�⃗t , (21)
�st = − 1

J
)F
)st

. (22)

The first of these equations and the fact that the local stress tensor �st is symmetric
are not restricted to elastic media. The second, Eq. (22), is.

The above formalism is broad enough to handle elastically homogeneous or inho-
mogeneous, isotropic or anisotropic media. The most familiar class of elastic media is
that which obeys Hooke’s law: stress is proportional to strain.

For use in the relativistic generalization, we note an alternative description of the
above theory, namely, we use as a variable the covariant metric tensor

�st ≡ �⃗s ⋅�⃗t =
)x⃗
)�s

⋅
)x⃗
)�t

(23)
instead of the strain tensor st. We use the same symbol F = F (�st, �⃗), whereupon

�st = − 2
J
)F
)�st

. (24)
For some purposes, it is convenient to use the contravariant metric tensor

�st = �⃗ s ⋅�⃗ t = ∇⃗�s ⋅∇⃗�t (25)
as a variable instead of �st, in which case we write

F (�st, �⃗) = G(�st, �⃗) . (26)
It is straightforward to verify that

S ij = )xi

)�s
)xj

)�t
�st = 2

J
)�s

)xi
)�t

)xj
)G
)�st

. (27)
If we use the strain metric as a lowering symbol to define a local stress tensor with
lower (covariant) body indices,

&st = �ss′ �tt′ �s
′t′ , (28)

then this can be written
Sij =

)�s

)xi
)�t

)xj
&st = S ij , (29)

&st =
2
J
)G
)�st

. (30)
The different names & and � for the covariant and contravariant local stress tensors are
intended to avoid confusion with the Cartesian raising and lowering operation, which
is trivial both in body space and in inertial space. We actually use only the �’s in this
paper.
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4. Conventions for Material Equations of Motion
and the Work-Energy Theorem

We assume only volume external forces, with no external surface forces, not even
on the boundaries of the medium. We assume Newton’s law of reaction for all internal
stresses across surface elements separating neighboring volume elements.

Our Lorentz metric is (+−−−), with four-vector indices � = 0, 1, 2, 3. Latin in-
dices are three-vector indices, as before. We define x0 = ct, and )� = )∕)x�. For
convenience in discussing both nonrelativistic and relativistic versions of the theory,
we define the energy-momentum tensor in both nonrelativistic units, T ��NR , and rela-
tivistic units, T �� :

T 00NR = T
00 = energy/volume ,

T i0NR = cT
i0 = energy/area-time = flux of energy ,

T 0jNR = T
0j∕c = momentum/volume ,

T ijNR = T
ij = momentum/area-time = force/area = flux of momentum .

(31)

The external force density four-vector f� is
f = (f⃗ ⋅v⃗∕c , f⃗ ) , (32)

where f⃗ d3x is the external force on a volume element, and f⃗ ⋅ v⃗ d3x is the power
expended by the external force on the volume element. The equations of motion are:

)�T
�� = f � , (33)

or in nonrelativistic units
)t T

00
NR + )i T

i0
NR = f⃗ ⋅v⃗ , (power law)

)t T
0j
NR + )i T

ij
NR = f

j . (force law)
(34)

We introduce the covariant four-velocity field u�(x) :
u = (v) (c, v⃗) , u⋅u = c2 . (35)

Then f ⋅u = 0 , and the relativistic conservation law, or, in nonrelativistic units, the
work-energy theorem, says

u� )�T
�� = 0 . (36)

We decompose T �� into a kinetic part and the rest:
T �� = K�� + E�� . (37)

The kinetic part in the nonrelativistic case is
K00

NR =
1
2
�v2 , K0j

NR = �v
j , (38)

K i0
NR = v

iK00
NR , K ij

NR = v
iK0j

NR . (39)
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In the relativistic case it is
K�� =

�

u�u� . (40)

In both cases, flux is material flow.
Both kinetic tensors automatically obey the conservation law (36) because of ma-

terial identities, such as the continuity equation. Thus,
u� )�E

�� = 0 . (41)
We are interested in the situation where E�� describes the elastic properties of

the medium. The procedure will be to make a general Ansatz for E�� , and look for
conditions for the conservation law to be valid. We then check that we recover the class
of theories described in Section 3 in the nonrelativistic limit, in effect rederiving the
fact that elastic stress is the gradient of strain in the nonrelativistic theory; andwe check
that the physical properties in the relativistic regime are natural for an elastic tensor
that one would be willing to call the relativistic generalization of the nonrelativistic
theory.

5. The Covariant Distortion Fields

Aswe reviewed in Section 2, the vectors �⃗s have an intuitively simple relation to the
state of distortion or strain (we use those terms interchangeably). For the relativistic
generalization, we find it convenient to start from the reciprocal quantities �⃗ s = ∇⃗�s
as a complete description of distortion. The reason is that not only do the quantities

�s�(x) = )��
s(t, x⃗) , s = 1, 2, 3 , (42)

transform as four-vector fields under Lorentz transformations, they have somewhat
simpler algebraic properties than their reciprocals, while containing the same distor-
tion information. We call this set of three, four-vector distortion fields a distortion
triad.

They can be put together with the local four-velocity field,
u(x) =  Dt x ≡ D� x , (43)

to form a tetrad. Since
Dt �

s = 0 , (44)
we get

)0 �
s = − v⃗

c
⋅∇⃗�s , (45)

which in turn yields
u⋅�s = 0 . (46)

Hence �s is spacelike. Moreover, the tetrad {u, �s} is linearly independent, because
the determinant

����� u� �
1
� �

2
� �

3
� =

c
J

, �0123 ≡ −1 , (47)
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is nonvanishing. This incidentally shows that J is a Lorentz invariant.
It turns out that the tetrad {u, �s} reciprocal to {u, �s} is convenient for applications,although algebraically a little more complicated. It obeys

�s ⋅�
t = �ts , �s ⋅u = 0 . (48)

To describe it and help in keeping track of what variables are held fixed in partial
derivatives, we introduce the following notation for the world position four-vector:

y�(�, �⃗) = x�(t, �⃗) =
(

ct, x⃗t(�⃗)
)

, (49)

where �(t, �⃗) is the proper time of the body point �⃗ at time t,

�(t, �⃗) = �(t0, �⃗) + ∫

t

t0

dt′

(t′, �⃗)
. (50)

In this notation,
u =

)y
)�

=  )x
)t
; (51)

and it is straightforward to verify that Eq. (48) is solved by

��s =
)y�

)�s
− u�

c
u
c
⋅
)y
)�s

= )x�

)�s
− u�

c
u
c
⋅
)x
)�s

. (52)

The notation using y and x indicates that � and t, respectively, are held fixed in the
differentiation with respect to �⃗.

The information that is being omitted from �s by projecting the u direction out of
the triad of four-vectors )y∕)�s can be understood as follows. Note that

)�(t, �⃗)
)�s

|

|

|

|�
= 0 = )�

)t
|

|

|

|�

)t
)�s

|

|

|

|�
+ )�
)�s

|

|

|

|t

= 1

)t
)�s

|

|

|

|�
+ )�
)�s

|

|

|

|t
.

(53)

Therefore
)y
)�s

= )x
)�s

+ )x
)t

)t
)�s

|

|

|

|�
= )x
)�s

− u )�
)�s

|

|

|

|t
, (54)

so
)y0

)�s
= −c )�

)�s
|

|

|

|t
,

)y⃗
)�s

= )x⃗
)�s

− v⃗ )�
)�s

|

|

|

|t
, (55)

whereas
�0s = 

2 v⃗
c
⋅
)x⃗
)�s

, �⃗s =
)x⃗
)�s

− 2 v⃗
c
v⃗
c
⋅
)x⃗
)�s

. (56)

The information that is missing from �s is clearly )�∕)�s||
|t
, which describes the rela-

tive aging of different body points.
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We take as the relativistic analog of the strain tensor, or rather of the strain metric
�⃗s ⋅�⃗t, the symmetric, 3×3 distortion array of Lorentz invariants:

�st ≡ −�s ⋅�t = −
)y
)�s

⋅
)y
)�t

+ u
c
⋅
)y
)�s

u
c
⋅
)y
)�t

. (57)
The reciprocal, invariant metric tensor is

�st ≡ −�s ⋅�t = ∇⃗�s ⋅∇⃗�t − v⃗
c
⋅∇⃗�s v⃗

c
⋅∇⃗�t . (58)

We could define the Lorentz invariant “analogous” strain tensor (see Eq. (16):

st = −
1
2

(

�st − �st

)

, (59)

or the Lorentz invariant “alternative” strain tensor (see Eq. (17):

�st =
1
2

(

�st − (�−1)st

)

. (60)

We choose instead to describe the state of strain by the invariant metric tensor �st . Allof the above quantities agree with their nonrelativistic analogs to leading order in v∕c.
Finally, we note an identity which shows the Lorentz invariant J to be a function

only of the relativistic strain:

����� �
�
1 �

�
2 �

�
3 = −J

u�

c
, (61)

det (−�s ⋅�t) = (J)2 . (62)
The corresponding identity for the reciprocal quantities is

����� �1� �
2
� �

3
� =

1
J

u�

c
, (63)

det (−�s ⋅�t) = 1
(J)2

. (64)

6. The Relativistic Elastic Tensor

In order to motivate our Ansatz for the elastic tensor, let’s elaborate a bit on the
concept of elasticity. In its nonrelativistic conception, the stress in an elastic medium
depends only on the field of elastic moduli and the state of distortion at each point,
except for the flow term in the kinetic part of the tensor; and the energy density, aside
from the kinetic part, is also a function only of the elastic moduli and the state of
distortion. In the relativistic generalization, we allow the elastic partE�� of the energy-
momentum tensor to depend only on the state of distortion, generalized to covariant
form, the four-velocity field, to account for relativistic kinematic effects, and the elastic
moduli of the body. In other words, E�� is to depend only on the elastic moduli, which
for us means any explicit �⃗ dependence, and on the four-velocity–four-distortion tetrad.
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Because the tetrad {u, �s} is linearly independent, any second rank tensor can be
decomposed into the sixteen dyads formed from it:

E�� = u�u�

c2
�00 + ��s �

�
t �

st + u�

c
��t �

0t + ��s
u�

c
�s0 , (65)

where we use the summation convention for the body indices s, t = 1, 2, 3 . The �
coefficients must be Lorentz invariant fields (in fact, Poincaré invariant), because we
want E�� to be covariant. They can have an explicit �⃗ dependence, because the body
coordinates are Poincaré invariant. If we demand that E�� depend only on distor-
tion, velocity, and moduli, the only other dependence the �’s can have is on invariants
formed from the tetrad {u, �s}. We saw earlier that all scalar and pseudoscalar invari-
ants formed from these depend only on the strain invariants �st = −�s ⋅�t . Thus, wemay choose to write the most general parametrization of �00 , for example, in the form

�00 = 1
J

F (�st, �⃗) , (66)

where we are using the fact that J is a function of �st.The only other general constraint is the conservation law, which says
0 = u� )�E��

= 1
J

u⋅) (J �00) + u� (�s ⋅)��t ) �
st

+
u�
Jc

u⋅) (��s J�
0s) + c

(

) ⋅
�s
J

)

J�s0 +
u�
Jc

�s ⋅) (u� J�s0) ,

(67)

where we have used the orthogonality of u with �s and the continuity equation
) ⋅ u
J

= 0 , (68)

which follows from Eqs. (6) and (4) by putting �0 = 1.To analyze this, we note some identities among partial derivatives. First the con-
tinuity equation (68) may be regarded as a straightforward property of the Jacobian
matrix of the transformation between the variables y (or x) and (�, �⃗), which also en-
tails that

) ⋅
(

1
J

)y
)�s

)

= 0 . (69)
This leads to

) ⋅
�s
J

= −
a⋅�s
Jc2

= −
�̇s
Jc

, (70)
where we have introduced the four-acceleration

a ≡ u̇ ≡ D�u , a⋅u = 0 , (71)
and the notation

�s ≡
u
c
⋅
)y
)�s

, �̇s ≡ D��s =
a
c
⋅�s = −

u
c
⋅�̇s . (72)

10



Note that
�s =

)y
)�s

− u
c
�s , (73)

and that the invariants �s contain the relative aging information that is absent in �s.We also define the invariant derivatives
Ds ≡ �s ⋅) =

)
)�s

−
�s
c
)
)�
, (74)

and record the symmetric and antisymmetric identities

u� (Ds �
�
t +Dt �

�
s ) = �s �̇t + �t �̇s −

)u
)�s

⋅�t −
)u
)�t

⋅�s

= −)
)�
(�s ⋅�t) = �̇st , (75)

u� (Ds �
�
t −Dt �

�
s ) = �s �̇t − �t �̇s −

)u
)�s

⋅�t +
)u
)�t

⋅�s . (76)

The strategy now is to identify kinematic and deformation quantities in the conser-
vation law (67) which vary independently in an arbitrary motion, and which must have
coefficients that vanish separately if the elastic tensor is to be defined independently of
the equations of motion. Keeping in mind that the �’s have no explicit � dependence,
and the identities above, the conservation law becomes

0 = �̇st

(

1
J

)(J�00)
)�st

+ �st

2

)

+ u⋅
Ds �t −Dt �s

2
�st

− �̇s (�0s + �s0) +
c
J

)(J�s0)
)�s

−
�s �̇tu
J

)(J�s0)
)�tu

.

(77)

If the kinematic quantities �̇st (symmetric), u⋅(Ds �t −Dt �s) (antisymmetric), �̇s ,and �s can be varied independently by selecting an arbitrary motion subject to fixed
strain invariants �st , we conclude that the �’s must obey the following identities in
order to define an elastic tensor independent of equations of motion:

�0s = −�s0 ,
)(J�s0)
)�s

= 0 ,
)(J�s0)
)�tu

= 0 ; (78)
�st = �ts ; (79)
�st = − 2

J
)(J�00)
)�st

. (80)

It is not hard to show that there are indeed nonzero solutions to Eq. (78) for �s0 and
�0s, but that their contributions to E�� all have identically vanishing four-divergence
(zero force density), and may be discarded. The solutions to Eq. (80) are automatically
symmetric, satisfying Eq. (79).

11



Weconclude that the class of elastic energy-momentum tensorsmay be parametrized
in the form

E�� = u�u�

c2
F
J

− ��s �
�
t
2
J

)F
)�st

,

F = F (�st, �⃗) .
(81)

There is no loss of generality in this parametrization if our independent variation ar-
gument following Eq. (77) is accepted. In any case, the parametrization satisfies the
general conservation law and the general criteria for elasticity. We shall see by in-
spection in the next section that its nonrelativistic limit is consistent with the standard
theory.

7. Interpretation and Nonrelativistic Limit

To interpret the elastic solutions (81), we write out the surviving, symmetric com-
ponents of the relativistic tensor E�� , Eq. (65), in nonrelativistic units:

E00NR = 
2�00 +

4

c2
v⃗⋅ )x⃗
)�s

v⃗⋅ )x⃗
)�t

�st ,

Ei0NR = 
2vi �00 +

(

2 )x
i

)�s
−
4

c2
vi v⃗⋅ )x⃗

)�s

)

v⃗⋅ )x⃗
)�t

�st ,

E0jNR =
2

c2
vj �00 +

2

c2
v⃗⋅ )x⃗
)�s

)xj

)�t
�st −

4

c4
v⃗⋅ )x⃗
)�s

v⃗⋅ )x⃗
)�t

vj �st ,

EijNR =
2

c2
vivj �00 +

(

)xi

)�s
−
2

c2
vi v⃗⋅ )x⃗

)�s

)(

)xj

)�t
−
2

c2
vj v⃗⋅ )x⃗

)�t

)

�st .

(82)

By inspection of their explicit c-dependence, we conclude that if E00NR and EijNR are
to have finite nonrelativistic limits, then so must �00 and �st , where the limit in the
�’s is taken by using the limiting values �st = �⃗s ⋅ �⃗t defined in Eqs. (13) and (23) as
v∕c → 0 , and by removing any remaining parametric c dependence through c → ∞.
That gives the nonrelativistic limit

E00NR = �
00 , E0jNR = 0 ,

Ei0NR = v
i�00 + EijNR vj , EijNR =

)xi

)�s
)xj

)�t
�st ,

(83)

where the limits in the �’s are understood.
In the nonrelativistic limit, the stress part EijNR, parametrized by Eqs. (80) and

(66), agrees as it should with the standard class of stress tensors for elastic media, as
expressed by Eqs. (24) and (20). The momentum density is zero, as we claimed. The
energy density agrees with the standard form of the elastic potential energy. The flux
of energy Ei0NR has a part due to elastic potential energy and a part due to work done
by the elastic stress.

We remark that it is straightforward to verify that the nonrelativistic limit obeys the
work-energy theorem exactly. We would be surprised if the analog of the discussion
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in the preceding section could not be carried through for the nonrelativistic case from
the beginning, leading to the same result we got in the limit. The requirement that �00
and �st depend only on Poincaré invariants would be replaced by the statement that
they can depend only on Gallilei invariants, those Gallilei invariants which involve
only distortion being exhausted by the components of the nonrelativistic metric tensor
�st. In particular, we should then get a direct proof that the nonrelativistic, elastic
momentum density is zero.

With the nonrelativistic limit as a guide to the intuition, we can see that the rela-
tivistic tensor in Eq. (82) has the form one would expect.5 We identify the terms in the
relativistic tensor (in nonrelativistic units) as follows. In E00NR , the piece 2�00 comes
from the contribution

�el =
 �00

c2
= F
Jc2

(84)
to the rest mass density from the elastic potential energy. The remaining piece is a
relativistic effect in the presence of stress.

The energy flux Ei0NR has a term due to flow of elastic rest mass and a term due to
work done by elastic stress.

The momentum density E0jNR has a term �el vj from the elastic rest mass density,
and an additional relativistic term from the elastic stress, analogous to the second piece
of the energy density.

The flux of momentum term EijNR has a piece due to flow of momentum density
�el vj and an elastic stress term.

That concludes our study of the elastic tensor in special relativity. We are in com-
plete agreement with DeWitt [4], and we refer to his work for a discussion of certain
topics we have not mentioned, such as the propagation of small disturbances.
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