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There are elements of SL(2, C) that cannot be written as the exponential of an
element of the Lie algebra. That is not exotic for Lie groups, but as physicists we
are not always as systematic about nailing down irrelevant facts as scholarship
might demand, and this fact was a mild surprise to me when I first encountered it.
This note describes a set of counterexamples to exponentiation in the subgroup
Γ ⊂ SL(2, C) of matrices of the form1

A =
(

a b
0 a−1

)

, a, b ∈ C . (1)

First, some notation. Let

z = (z1, z2, z3) (2)

be a complex three-vector, and let the components of

� = (�1, �2, �3) (3)

be the standard 2×2 Pauli matrices. The three-vector dot products z⋅z and z⋅�
do not involve conjugation. Any element of the 6-dimensional, real Lie algebra
of SL(2, C) can be written as −iz⋅�, where2

z⋅� =

(

z3 z1 − iz2
z1 + iz2 −z3

)

, (4)

1Although I’ve forgotten his exact formulation, I’m sure I learned about this from one of
Eyvind Wichmann’s lucid sets of lecture notes.

2Here J = �∕2 generates rotations and K = −i�∕2 generates boosts.
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and it is a Pauli-matrix identity that

(z⋅�)2 = z⋅z I ≡ w2 I . (5)

With the help of this identity, it is easy to compute the exponential of −iz⋅� from
its power series, which converges everywhere:

exp−iz⋅� = I cosw − iz⋅� sinw
w

. (6)

The theorem below parametrizes the elements of Γ that are exponentials. The
set of elements which are not exponentials is then noted in a corollary.

Theorem. A = exp−iz⋅� ∈ Γ if and only if A and z have one of the two forms,

I: A = (−1)n I , z⋅z = (n�)2, n = ±1,±2,… , (7a)

II: A =
(

a b
0 a−1

)

, z =
(

i
bz3

2 sin z3
,
bz3

2 sin z3
, z3

)

, (7b)

z3 ≠ n� , n = ±1,±2,… .

The identitymatrix is common to both forms, but the conditions on z aremutually
exclusive.

Proof. Let
(

a b
0 a−1

)

= exp−iz⋅� = I cosw − iz⋅� sinw
w

, (8)

From the form of z⋅� in Eq. (4), we must have

(z1 + iz2)
sinw
w

= 0 . (9)

There are two, not entirely exclusive cases:

1. sinw∕w = 0

Note that w ≠ 0 in this case, because then sinw∕w = 1. Thus,

sinw = 0 , w = n� , n = ±1,±2,… ,
z⋅z = w2 = (n�)2,

cosw = (−1)n,
exp−iz⋅� = (−1)n I .

(10)

That precisely covers form I.
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2. z1 + iz2 = 0

In this case

w2 = z⋅z = (z3)2, (11a)

exp−iz⋅� = I cos z3 − i
(

z3 2z1
0 −z3

)

sin z3
z3

=
⎛

⎜

⎜

⎝

exp−iz3 −2iz1
sin z3
z3

0 exp iz3

⎞

⎟

⎟

⎠

. (11b)

When sin z3∕z3 = 0, we have z3 = n�, n = ±1,±2,… , and z⋅z = (n�)2, a
special case of form I.

When sin z3∕z3 ≠ 0, we precisely cover form II, which can be split into two
subforms, each with unrestricted b:

z3 = 0 , (a, b) = (1,−2iz1), (12a)

z3 ≠ 0,±�,±2�,… , (a, b) =
(

exp−iz3,−2iz1
z3
sin z3

)

. (12b)

Corollary. A ∈ Γ is not an exponential if and only if it has the form

A =
(

−1 b
0 −1

)

, b ≠ 0 . (13)

Proof. According to the theorem, the pairs (a, b) ∈ C2 for which A corresponds
to an exponential of form I belong to the set

EI =
{

(a, b): a = ±1 and b = 0
}

, (14a)

and for form II, according to Eqs. (12a) and (12b), to the set3

EII =
{

(a, b): a = 1 or sin z3 ≠ 0
}

=
{

(a, b): a = 1 or a ≠ ±1
}

.
(14b)

3The two sets have the point (a, b) = (1, 0) in common.
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Since

¬EI = {(a, b): a ≠ ±1 or b ≠ 0},

=
{

(a, b): a ≠ ±1
}
⋃

{

(a, b): b ≠ 0
}

,
(15a)

and

¬EII =
{

(a, b): a ≠ 1
}
⋂

{

(a, b): a = ±1
}

=
{

(a, b): a = −1
}

,
(15b)

the negation of EI ∪ EII is

¬EI ∩ ¬EII =
{

(a, b): a = −1 and b ≠ 0
}

. (16)
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