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1 Introduction
Baker and Wightman1 introduced the idea that the class of solutions of the func-
tional field equation may be enlarged, and the triviality problem for four dimen-
sions possibly avoided, by exploiting its invariance under the choice of contours

∗February 18, 2021: The body of this document is an almost literal transcription of the
original manuscript, with the above date, entitled “Notes on the Euclidean �4 functional field
equation.” The table of contents was added in April, 1994, and the introduction in March, 2008.

1G. A. Baker and A. S. Wightman, “Trying to Violate Coupling Constant Bounds in �4�
Quantum Field Theory,” in Progress in Quantum Field Theory, eds. H. Ezawa and S. Kamefuchi,
(Elsevier Science Publishers, 1986), pp. 15–29.
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in the lattice version of the Euclidean path space integration. We call this Baker-
Wightman invariance. They discussed a ferromagnetic and antiferromagnetic
mixture, and showed that unfortunately it violated the cluster property.

These notes summarize our local extension of their idea, called local Baker-
Wightman invariance, which aims to restore the cluster property. It was the start-
ing point for an honors thesis by Michael K. Weiss,2 and was used by the author
to explain why, in an ultralocal model, the continuum limit from the lattice was
trivial, but the Euclidean functional field equation nevertheless had a nontrivial
solution obeying the cluster property.3

2 Continuum field equation
Bare generating functional:

0(J0) =
∫ d�0 exp

[(

−1
2
⟨�0(−Δ + �20)�0 ⟩ −

1
4
�0 ⟨�40 ⟩ + ⟨�0J0 ⟩

)

∕ℏc
]

∫ d�0 exp [(⋯)∕ℏc]||J0=0

⟨ f ⟩ ≡ ∫ f (x) d4x

Renormalization:

�20 = �
2 + ��2 , �0 = � + �� , �0 =

√

Z� , J0 = J∕
√

Z

0(J0) = (J )

=
∫ d� exp

[(

−1
2
Z⟨�(−Δ + �2 + ��2)� ⟩ − 1

4
(� + ��)Z2

⟨�4 ⟩ + ⟨�J ⟩

)

∕ℏc
]

∫ d� exp[(⋯)∕ℏc]|
|J=0

2Michael K. Weiss, “Standard and Nonstandard �4 Theories with An Introduction to Quan-
tum Field Theory,” honors thesis for the Bachelor of Science degree, University of Michigan,
April 15, 1994.

3David N. Williams, “Triviality and Nontriviality of Ultralocal, Euclidean Φ4,” unreleased
manuscript, 1985.
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Field equation: Define

(J ) = exp[L(J )∕ℏc] = exp[L0(J0)∕ℏc] = 0(J0)

L(J ) = connected generating functional

�(x) = �L
�J (x)

= 1
√

Z

�L0
�J0(x)

= 1
√

Z
�0(x) = “effective field”

The field equation results from the formal integration by parts identity: let

Z(J ) = ∫ d� exp
[

−S(�) + ⟨�J ⟩

ℏc

]

(J ) ≡ Z(J )∕Z(0)

0 = ∫ d� ℏc �
��

exp
[

−S(�) + ⟨�J ⟩

ℏc

]

= ∫ d�
(

−�S
��

+ J
)

exp
[

−S(�) + ⟨�J ⟩

ℏc

]

=
[

−�S
��

(

ℏc �
�J

)

+ J
]

Z(J )

[

�S
��

(

ℏc �
�J

)

− J
]

(J ) = 0

When expressed in terms of L(J ) and � (effective), this becomes:

J = −ZΔ� +
(

�2 + ��2
)

Z�

+ (� + ��)Z2 [�3 + 3ℏc ��� + (ℏc)2�2�
]

�� ≡ ��(x)
�J (x)

, �2� ≡ �2�(x)
�J (x)�J (x)

In the above, J , �, �2, and � are renormalized. This is a perfectly good starting
point for perturbative renormalization, and in many ways is quite efficient.
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The bare version is

J0 = −Δ�0 + �20 �0 + �0
[

�30 + 3ℏc �0��0 + (ℏc)
2�2�0

]

��0 ≡
��0(x)
�J0(x)

, �2�0 ≡
�2�0(x)

�J0(x)�J0(x)

3 Discretized field equation
For simplicity of notation, we look at the bare theory for (1+0) time-space di-
mensions, and we put ℏc = 1.

Z(J ) = ∫
∏

i
d�i exp

∑

j

[

−
(�j+1 − �j)2

2a2
−
�20
2
�2j −

�0
4
�4j + �jJj

]

ad

where a = lattice spacing, ad = a “=” ddx. Integration by parts gives the field
equation:

0 = ∫
∏

i
d�i

[

(Δ�)l
a2

− �20 �l − �0 �3l + Jl

]

exp[⋯]

(Δ�)l ≡ �l+1 − 2�l + �l−1

0 =

[

−
(Δ
a2
)
)J

)

l
+ �20

)
)Jl

+ �0
)3

)J 3l

]

Z(J )

The corresponding equation in terms of the effective field can be easily writ-
ten down. We leave things this way for now to discuss our local version of Baker
and Wightman’s invariance idea.

Note that if�j at one or more sites j is complex instead of real, the integration
by parts identity and its expression in terms of )∕)J remains unchanged. The
only technical point is the convergence of the integration. For pure imaginary �j ,
this too is satisfied (at least for a finite lattice), because the �0�4j terms dominate
the exponential, and they remain positive.

Thus, any linear combination of Z(J )’s with arbitrary selections of real and
imaginary �j’s satisfies the field equation. We next discuss the choice of these
combinations necessary for reality and cluster properties.
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4 Reality
Reality conditions may be discussed quite generally. Let S(�) = S(�1, �2, ...) be
any function of fields on the lattice (any dimension) which obeys the following:

(i) S(�) is an entire function of its arguments that is real when all �j’s are
real, so that under complex conjugation

S(�1, �2, ...)∗ = S(�∗1 , �
∗
2 , ...) ;

(ii) ∫ d�1d�2 ⋯ exp[−S(�) + ⟨�J ⟩] is well defined for any assignment of
real and pure imaginary �j’s at the various sites.

Then

)
)Jl1

⋯
)
)Jln

iN∫ d�1d�2 ⋯ exp[−S(�) + ⟨�J ⟩]

is real for real J ’s andN = the number of pure imaginary �’s.

Proof:
[

iN∫ d�1d�2 ⋯ exp[−S(�) + ⟨�J ⟩]
]∗

= (−i)N ∫ d�∗1 d�
∗
2 ⋯ exp[−S(�∗) + ⟨�∗J ⟩]

= (−i)N (−1)N∫ d�1d�2 ⋯ exp[−S(�∗) + ⟨�∗J ⟩]

Now for pure imaginary �∗j = −�j make the change of variables in the integra-
tion �′j = −�j ,

∫

i∞

−i∞
d�j = ∫

i∞

−i∞
d�′j ,

and we find that [ ]∗ = [ ]. Derivatives with respect to real Jl’s are therefore
also real.
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Note that this covers the case of Euclidean �4 theories with cubic terms in
the action. That is, the only role of evenness in the action S(�) is in the evenness
and positivity of the dominant term, to make the integrals converge.

So far, we have learned that real linear combinations of

iN∫ d� exp[−S(�) + ⟨�J ⟩]

over selections of real and imaginary fields at each site are real and obey the field
equation.

5 Cluster
The reasoning here is handwaving, but surely determines a necessary condition
for the cluster property. We assume an infinite lattice, with no convergence prob-
lems for an arbitrary assignment of real and imaginary fields.

Then the normalized functional (J ) = Z(J )∕Z(0) gives rise to the cluster
property when the n-point functions obey

⟨�i1 ⋯�im�
a
j1
⋯�ajn ⟩ ←←←←←←←←←←←←←←←←←←→a→∞

⟨�i1 ⋯�im ⟩⟨�j1 ⋯�jn ⟩ ,

where a is a space-time translation (in Euclidean theory), and where

⟨�i1 ⋯�im ⟩ =
[

∫ d� e−S(�) �i1 ⋯�im

]

∕Z(0) , etc.

The nonindependence or nonvanishing correlation at finite translations a is
due only to the gradient terms in the action, and we expect it to remain a small
probability business at large a, independent of the sign or reality of the quadratic,
nearest or next-nearest neighbor terms in the action. Thus, we expect that every
term in a sum over reality assignments in �4 will factorize at large separations.

A linear combination will not, however, factorize into a product of combi-
nations corresponding to the same (J ) unless chosen judiciously. In particular,
the relative weight of the real and imaginary selections of fields must be the same
at each site.

To describe that, we parametrize the combinations as follows, in terms of real
fields with explicit factors of i. A reality configuration {q} is a sequence

{q} = {q1, q2,…}
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indexed by sites, where qi = 1 or i. To each site in the configuration we assign a
weight �N when qi = 1 (real, normal), and �A when qi = i (imaginary, abnormal).
Here �N and �A are real, and �N is the same at each real site, while �A is the same
at each imaginary site.

Define

Z(J ) =
∑

{q}
∫

∏

i
d�i �#realsN �#imags

A

× exp

[

−S(�1q1, �2q2,⋯) +
∑

i
�iqiJi

]

,

(J ) = Z(J )∕Z(0) .

Instead of a single path integral, we have here a distribution of path integrals
over reality configurations.

Finally, we write this out in the (1+0)-dimensional case (bare quantities):4

Z(J ) =
∑

{q}
∫

∏

i
d�i �#realsN �#imags

A

× exp−a
∑

j

[

(�j+1qj+1 − �jqj)2

2a2

+
�20
2
�2jq

2
j +

�0
4
�4jq

4
j − �jqjJj

]

4It would have been cleaner to write this in terms of normalized functionals with weights
obeying �N+�A = 1.
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