
Election Forensics: Outlier and Digit Tests in America

and Russia∗

Walter R. Mebane, Jr.†

May 1, 2008

Abstract

I illustrate election forensic testing using a combinationof robust overdispersed

multinomial model estimation and second-digit mean testing, with data from the 2004 U.S.

presidential election in Ohio and the 2004 Russian presidential election.

∗Prepared for presentation at The American Electoral Process conference, Center for the Study of Democratic
Politics, Princeton University, May 1–3, 2008. I thank Kirill Kalinin for helpful advice and assistance.

†Professor, Department of Political Science and Departmentof Statistics, University of Michi-
gan, Haven Hall, Ann Arbor, MI 48109-1045 (Phone: 734-763-2220; Fax: 734-764-3522; E-mail:
wmebane@umich.edu).

1



Introduction

Two methods that have figured prominently in work on electionforensics are robust estimation of

count data models with outlier detection (Wand, Shotts, Sekhon, Mebane, Herron, and Brady

2001; Mebane and Sekhon 2004; Mebane and Herron 2005) and tests based on the so-called

second-digit Benford’s Law (2BL) distribution applied to vote counts (Mebane 2006a,b, 2007b,a,

forthcoming). Mebane (2007a) sharpens the question of whether departures from the 2BL

distribution are useful for detecting gross departures from an untainted voting process, asking

whether the particular pattern of departure is useful for diagnosing precisely why anomalies may

have happened. The analysis in Mebane (2007a) ultimately focuses on the conditional means of

the second digits in collections of vote counts, measuring how these means differ from the means

expected according to the 2BL distribution. The conditioning factors in that analysis, which

examined data from the 2006 election in Mexico, were the partisan affiliations of mayors in

Mexican municipalities.

The focus of the current paper is to illustrate such conditional digit-mean analysis where the

conditioning factors come from robust estimation of the distribution of measures of plausible

methods by which an election may have been corrupted. Following a brief simulation exercise

intended to suggest intuition, I look at an example from the 2004 U.S. presidential election in

Ohio and at an example from the 2004 presidential election inRussia.

2BL Test Statistics

I use two kinds of statistics to implement tests of whether vote counts have the 2BL distribution.

One is the Pearson chi-squared statistic used in Mebane (2006a) and subsequent work. To define

this statistic, letqj denote the expected relative frequency, according to Benford’s law, with which

the second significant digit isj.1 Let nj be the number of times the second digit isj among the

1The expected frequencies are (rounded)(q0, . . . , q9) = (.120, .114, .109, .104, .100, .097, .093, .090, .088, .085).
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vote counts being considered, and defineN =
∑

9

j=0
nj. The statistic for a 2BL test is

X2

2BL =
9∑

j=0

(nj − Nqj)
2

Nqj

.

This statistic may be compared to theχ2-distribution with 9 degrees of freedom (χ2

9
).

The other kind of test, illustrated in this paper, compares the arithmetic mean of the second

digits to the mean value expected if the digits are 2BL-distributed. This test adapts an idea used in

Grendar, Judge, and Schechter (2007)’s analysis that focuses on the first significant digit and is

intended to identify what they describe as generalized Benford distributions. Grendar et al.

suggest that data that do not conform to Benford’s law may have first digits that match a member

of a specified class of exponential families. In Mebane (2006b) I argue that vote counts in general

do not have digits that match Benford’s law at all. For instance, the distribution of the first digits

of vote counts is undetermined. Mebane (2006b) demonstrates a pair of naturalistic models that

produce simulated vote counts with second digits but not first digits that are distributed roughly as

specified by Benford’s law. Nonetheless we can use the mean ofthe second digits to test how

closely the digits match the 2BL distribution. Given 2BL-distributed counts, the value expected

for the second-digit mean is (rounded)
∑

9

j=0
jqj = 4.187.

This second kind of test straightforwardly supports askingwhether the distribution of second

digits differs from the nominal 2BL distribution in a way that depends on observed conditioning

factors. For vote countsyi observed for precincts or polling stations indexed byi, it’s simply a

matter of regressing (by ordinary least squares) the seconddigits on a set of conditioning factors

Xi and testing whether the associated coefficients are statistically distinguishable from zero.

When the number of counts in the analysis is large, simple normal theory methods are at least a

reasonable first-cut method for making inferences.
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Simulations

First let me illustrate what happens to the second-digit distributions when votes are artificially

manipulated, first in a proportionally uniform manner and then nonuniformly in some simulations.

Start with a situation in which there is an ideal set of numbers that perfectly satisfy the 2BL

distribution, and imagine that all the numbers are grossly increased to such an extent that the

second digits all change. Table 1 shows what happens in such circumstances. Each row of Table 1

shows an imagined ordering for the second digitsdj, indexed byj = 0, . . . , 9, followed by the

implied 2BL mean value
∑

9

j=0
djqj . The first row shows the unshifted digits, the second row

shows the digits shifted up by one (e.g.,0 becomes1, 1 becomes2, and so forth), continuing

through the tenth row which shows the digits shifted up by nine. Another perspective on these

shifts is to recognize that the digits in the second row occurif a set of 2BL-distributed counts are

all increased by ten percent, the digits in the third row occur if the increase is by twenty percent,

and so forth. Yet another perspective is that the digit ordering in the second row occurs if all the

digits are shifted down by nine; for suitably large counts, this corresponds to decreasing all the

original counts by ninety percent. In every case in these nine rows of the table, such uniform

shifts in the digits produces increases the 2BL mean. Perhaps counterintuitively, then, the mean of

the second digits in a set of counts should be greater than the2BL expectation of 4.187 if what

was originally a set of 2BL-distributed values has been either uniformly increased or decreased by

a sufficiently large proportion.

*** Table 1 about here ***

The last three rows of Table 1 illustrate that 2BL means less than the 2BL expectation can

occur if changes away from the original 2BL distribution occur in a nonuniform way.

Next consider a simulation in which votes are manipulated nonuniformly. To simulate vote

counts for a pair of candidates, I apply a mechanism used in Mebane (2007c). For a set ofN

precincts indexed byi, compute a set of uncorrelated bivariate normal pseudorandom numbers

(denoted(xi, yi)) and a set of numbers uniformly distributed on the interval from zero to one
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(denotedri):

(xi, yi) ∼ N(µx, µy; σx, σy)

ri ∼ U(0, 1) .

The parametersµx andµy denote the means ofx andy, andσx andσy denote their variances. The

(xi, yi) values are used to generate proportions of support for each candidate in precincti:

pxi =
exp(xi)

exp(xi) + exp(yi) + 1

pyi =
exp(yi)

exp(xi) + exp(yi) + 1
.

Thepxi andpyi values are the proportions of voters in precincti who vote, respectively, for each

candidate. Notice thatpxi + pyi < 1: the mechanism accommodates ballots that lack a vote for

either candidate. To get the number of votes for each candidate we fix a maximum number of

potential votes in each precinct, denotedM , so that⌊Mri⌋ corresponds to the number of ballots

cast in precincti. The simulated counts of votes for the candidates are

zxi = ⌊Mripxi⌋

zyi = ⌊Mripyi⌋ .

I simulate counts for pairs of candidates withM = 2500 and, successively,

N ∈ {500, 1000, 2000}.2 The manipulations consist of a fixed numberfM of votes being added

to one candidate’s total in each precinct and subtracted from the precinct totals of the other

candidate; if the number subtracted from the “donor” candidate exceeds the count originally

simulated for that candidate, then zero is assigned for thatcandidate’s vote in that instance. I

simulate switching for proportionsf ∈ {0, .05, .1, .15, .2, .25, .3, .35, .4, .45, .5}.

Table 2 shows that the second-digit means for these simulated votes sometimes exceed but

2The other simulation parameters are set at valuesµx = 1.25, µy = 1.0; σx = 1.25, σy = 1.5.
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mostly are smaller than the 2BL expected value. The top part of the table shows the simple

difference between the second-digit means and the 2BL expected value 4.187, averaged over the

replications. The bottom part of the table showst-statistics produced by dividing these

differences by the standard deviation of the means across replications. For the “receiver”

candidate the second-digit means are significantly less than 4.187 for switching proportions

f ∈ {.2, .25, .3, .35, .4, .45}. Interestingly, forf = .5 the “receiver” candidate’s second-digit

means are significantly greater than 4.187. Differences forthe “donor” candidate are not

significant in the set of simulation conditions reported here.

*** Table 2 about here ***

Votes and Turnout in Ohio 2004

Several well-known manipulations attempted in Ohio duringthe 2004 presidential election

involved voter turnout. First, Ohio Secretary of State Ken Blackwell attempted to suppress

turnout by imposing unreasonable and illegal requirementson the kind of paper to be used for

voter registration forms (House Judiciary Committee Democratic Staff 2005). Second, inadequate

provision of voting machines produced great delays in voting at many polling places that deterred

many people from voting (e.g. Mebane 2005). Whether the latter problem reflected intentional

efforts to reduce turnout is not clear, but the fact that turnout was reduced is not in dispute. Table

3 reproduces a display from Mebane and Herron (2005) that shows turnout to be strongly affected

by the number of voting machines per registered voter in eachprecinct, particularly in counties

that used direct record electronic (DRE) or punchcard machines.

*** Table 3 about here ***

The table reports coefficients from estimating a set of robust overdispersed multinomial

regression models. To assess whether precincts that had unusual levels of turnout also had

unusual vote distributions, I use a function of the weights produced as part of the robust

estimation algorithm as a regressor in a linear regression model for the second digits of the vote

counts recorded for John Kerry and for George W. Bush. These weights vary from zero to one,
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and they are smaller when the turnout in a precinct is highly disrepant from the value expected

given the regressors and coefficients shown in Table 3. As thefootnote in the table indicates,

overall there are 61 precincts that are outliers, which means the weights for those precincts are

zero. Other precincts have weights that are greater than zero but still less than one. Denoting the

weights bywi, the regressor I use in the model for the second digits of the vote counts is

Xi = 1 − wi. If the coefficient for this variable is significantly different from zero, the suggestion

is that unusual turnout is associated with unusual vote totals for at least one of the candidates.

Table 4, which reports the regression results, shows that over all the precincts in Ohio, the

second digit mean when turnout is not unusual relative to themodels of Table 3 (i.e., where

wi = 1) differs slightly but significantly from the 2BL expected value. The intercepts in both the

model for Bush and the model for Kerry are significantly greater than 4.187. In the model for

Bush but not in the model for Kerry, the coefficient for the1 − wi variable is significantly

negative. The 95% confidence interval for the mean of the second digit in Bush vote counts when

wi = 0 is (3.45, 3.96), which is strictly less than the 2BL expected value.

*** Table 4 about here ***

This significant result for Bush lines up with the result for the “Receiver” candidate in the

simulation exercise reported in Table 2. The suggestion is that the substantial turnout

manipulations in Ohio in 2004 favored Bush. The fact that thesecond-digit means for both Bush

and Kerry exceed the 2BL expected value in precincts that didnot have unusual turnout relative to

the Table 3 models also has an important implication. The results of Table 1 suggest that such an

elevation in the second-digit means is a symptom of a relatively uniform shift in all the vote

counts. Because voting machine shortages and other adminstrative failures in Ohio in 2004

reduced turnout relatively equally among both Democrats and Republicans (Mebane and Herron

2005; Voting Rights Institute 2005, Section III), such a relatively uniform shift is more likely a

prevalent reduction in the number of votes for each candidate than a general pattern of increases.

So we might conclude that while overall votes were lost in a similar, relatively uniform manner

for both candidates, Bush gained votes in those precincts where turnout was unusual relative to
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expectations based on the provision of voting machines and proportion of the precinct’s

population that was African-American.

Votes and Manipulations in Russia 2004

Elections in Russia have long been suspect. Based on analysis focused on aberrant patterns in

voter turnout, Myagkov and Ordeshook (2008) argue that during the past 15 years “falsifications

in the form of stuffed ballot boxes and artificially augmented election counts” have become

prevalent throughout the country (see also Myagkov, Ordeshook, and Shaikin forthcoming). The

OSCE identified serious problems in the 2004 election (OSCE Office for Democratic Institutions

and Human Rights 2004), and by 2008 problems had become so severe that international observer

groups declined to observe the election (OSCE Office for Democratic Institutions and Human

Rights 2008). Kalinin (2008) demonstrates several significant distortions in votes reported for the

2004 and 2008 presidential elections.

Here I reexamine a few of the hypotheses Kalinin suggests about fraud in Russian elections,

using data from the 2004 presidential election. The 2004 election ultimately included six

candidates, nominally representing six political partiesor coalitions: Vladimir Vladimirovich

Putin (United Russia); Nikolaj Mihajlovich Haritonov (Communist, Agrarian); Irina Mucuovna

Hakamada (Union of Right); Oleg Aleksandrovich Malyshkin (Liberal Democratic); Sergej

Mihajlovich Mironov (Life); and Sergej YUr’evich Glaz’ev (Rodina). In 2004 ballots also offered

the option of voting to reject all the candidates, with a choice labeledProtiv vseh (Against all).

My analysis is based on vote counts reported at the level of polling stations or UIKs (UIK is

uchastkovaya izbiratelnaya komissiya).3 The data include counts from 95,426 UIKs, covering

2,755 territories and 89 regions.

Vladimir Putin was universally recognized to have an extremely strong position in the

election, both because of his high popularity and because hecontrolled the apparatus

3Data were downloaded on February 16, 2008, from the website of the Central Election Commission of the Russian
Federation,http://www.vybory.izbirkom.ru/region/izbirkom.
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administering the election. Of the hypotheses that Kalinin(2008) proposes regarding the means

by which frauds may have been perpetrated in the election, I consider three: H1, artificially

elevated voter turnout (the phony votes supposedly going toPutin); H4, excess numbers of invalid

or lost votes (votes for opponents to Putin supposedly beingspoiled); H5, excess numbers of

absentee certificates (certificates supposedly being forged and also used to force voters to cast

coerced votes for Putin). The data I use to measure the key variables the hypotheses involve vary

slightly from the implementations used by Kalinin (2008). Total turnout I measure using the

number of nonabsentee valid ballots at each UIK. The invalid/lost ballot count is the number of

invalid or lost ballots. The residual category—nonvoted ballots—is the number of eligible voters

at each UIK minus the total of nonabsentee valid ballots plusinvalid or lost ballots plus absentee

certificates.

There is a question whether electoral manipulations were organized at the level of regional or

territorial election commissions. To investigate this, myanalytical strategy is to start by

estimating four-category robust overdispersed multinomial models separately for the set of

regional totals and the set of territorial totals. The four categories are nonabsentee valid ballots,

invalid or lost ballots, absentee certificates and nonvotedballots. In these models the only

regressors are the intercepts for each category, so outliers, if any, will be regions or territories that

have proportions in a category that are far greater or far smaller than the generally prevailing rate.

Table 5 reports the estimates for these intercept parameters along with the number of zero weights

estimating the model produces. Note that with four categories of counts, a single observation may

include up to three zero weights. Table 6 shows the breakdownby category not only of the

numbers of zero weights but also the numbers of weights less than one. Measured in regions or

territories, the greatest number both of outliers and of downweighted counts occur for the H5

(absentee certificates) category. The H1 (nonabsentee valid ballots) category has the next highest

number, and the H4 (invalid or lost votes) category has the fewest. In terms of the number of

UIKs in the unusual regions or territories, however, the H1 category has by far the largest number

of unusual observations (e.g., more than 20,000 UIKs in outlier regions or outlier territories), with
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the H5 category second largest. With one exception—one of the territory outliers for the

nonabsentee valid ballots counts—all of the outliers correspond to counts greater than expected

according to the generally prevailing rates.

*** Tables 5 and Table 6 about here ***

The next step is to regress the second digits of the UIK-levelvote counts for each candidate

(and Against All) on region and territory regressors definedasXhi = 1 − whi wherewhi is the

weight for categoryh ∈ {H1, H4, H5} for the region or territory that include the UIK indexed by

i. Before considering these regression results, it is worthwhile to take a quick look at the raw

relationship between the UIK-level turnout, invalid and absenteee proportions and both the raw

vote counts and the vote proportions for each candidate. Figures 1 and 2 respectively show these

relationships for candidates Putin and Haritonov. The scatterplot in each subfigure displays a one

percent random sample of the full set of UIKs, while the line drawn in each figure represents the

linear least squares regression line estimated using all the UIKs. In Figure 1 the vote proportions

for Putin show a strong pattern of increase as the turnout, invalid and absenteee proportions

increase, but no such pattern is apparent among Putin’s raw vote counts. The picture for

Haritonov, in Figure 2, also shows increases in the vote proportions, although the relationships are

less steep than the ones observed for Putin. The raw vote counts for Haritonov are if anything

more negatively associated than Putin’s are with the turnout, invalid and absenteee proportions.

Such plots suggest Putin’s support tends to increase more than other candidates’ support with

increases in the turnout, invalid and absenteee proportions, although of course such relationships

of themselves are in no way diagnostic of anomalies or frauds. The relationships with the raw

vote counts are not readily interpretable, but they are worth keeping in mind given our focus on

regressions in which the dependent variable is the second significant digit in each of these counts.

*** Figure 1 and Figure 2 about here ***

Table 7 shows an example of the second-digit regression results. The dependent variable in

this example is the second digit of the UIK vote counts for Putin. The second digit mean when

turnout is not unusual is slightly but significantly less than the 2BL expected value. In light of the
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simulation results reported in Table 2, this suggests thereare nonuniform but pervasive distortions

in the vote counts for Putin. All three of the coefficients forthe region-levelXhi variables are

significant, while only one of the coefficients for a territory-levelXhi variable is (marginally)

significant. This suggests that regions that have outlying levels of turnout exhibit especially

distorted Putin vote totals but outlying territories do not. Here, however, it is important to notice

that the regionalXH1i coefficient is positive while the regionalXH4i andXH5i coefficients are

negative. Plus theXH1i coefficient is an order of magnitude smaller than the other two. Hence if

we considers the mean second digit in UIKs that havewhi = 0, the mean whenwH1i = 0 is closer

to the 2BL expected value (although still significantly smaller), while the mean whenwH4i = 0 or

wH5i = 0 is even smaller than the overall mean is.

*** Table 7 about here ***

Figures 3 through 9 present the second-digit regression results for all of the candidates in

graphical form. Figure 3 plots the point estimates for the intercept parameters for each candidate,

with lines to show the 95% confidence interval for each estimate. All but the estimate for the

Against All (None in the figure) category are significantly less than the 2BL expected value of

4.187 (indicated with a vertical line in the figure).

*** Figures 3 about here ***

Figure 4 shows the coefficient point estimates and 95% confidence intervals for theXH1i

(turnout) regressors. The regional coefficients for Putin and for Malyshkin are significantly

positive, and the region coefficient for Mironov and both coefficients for Against All (None) are

significantly negative. It is perhaps intuitive that in regions and territories with outlying turnout

levels the counts for the Against All alternative are distorted. Figure 5 shows the point estimates

and 95% confidence intervals for the mean of the second digit in each candidate’s vote counts

whenwH1i = 0; these intervals are all strictly less than the 2BL expectedvalue.

*** Figure 4 and Figure 5 about here ***

Figure 6 shows that the coefficient estimates for the regional XH4i (invalid/lost) regressors are

significantly positive for Putin and Hakamada and significantly positive for Mironov and Against
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All (None). None of the territorial coefficients are significant. Figure 7 shows that the mean of the

candidate vote count second digits when the regionalwH4i = 0 is significantly less than the 2BL

expected value for the first four candidates and significantly greater than the expected value for

Mironov and Against All (None). The mean is significantly less than the 2BL expected value

when the territorialwH4i = 0 only for Haritonov and Mironov.

*** Figure 6 and Figure 7 about here ***

Figure 8 shows that the coefficient estimates for the regional XH5i (absentee) regressors are

significantly negative for all the candidates except Malyshkin, while none of the territorialXH5i

coefficients are significant. Figure 9 shows that the mean of the vote count second digits when the

regionalwH4i = 0 is significantly less than the 2BL expected value is significantly less than the

expected value for all the candidates except Malyshkin.

*** Figure 8 and Figure 9 about here ***

For two of the three classes of possible manipulations the hypotheses focus on, the distribution

of votes (not second digits) in categories defined by the outlier weightswhi supports a conclusion

that the manipulations did help Putin and harm the other candidates. Table 8 reports the

proportion of votes for each candidate among sets of UIKs defined by eitherwhi = 1 or whi = 0.

For H1 and H4, Putin’s vote proportions are much larger whenwhi = 0 than whenwhi = 1, while

for most of the other candidates—and in particular for the Communist party candidate

Haritonov—the vote proportions are smaller whenwhi = 0. This pattern does not hold for H5.

*** Table 8 about here ***

Conclusion

Combining robust count model estimation with second-digittesting in relation to the 2BL

distribution produces suggestive results worthy of further investigation. For Ohio 2004, an

examination of aberrations related to voter turnout suggests that against a background of

pervasive distortion in the vote counts for both Bush and Kerry, extremes in unusual turnout were

associated with advantages for Bush. For Russia 2004, the analysis suggests advantages for Putin
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related to both unusual turnout and excessive numbers of invalid and lost ballots. Findings

relating to possible manipulation via absentee certificates are more complicated. For both

elections, the kind of election forensic testing illustrated here match allegations supported by both

contemporaneous observers and other forms of analysis.

A principal direction for further development of the methods themselves is to investigate

further the relationship between second-digit means and patterns of shifts in votes. Whether the

second-digit mean is greater or smaller than the 2BL expected value does not so far appear to be

strongly connected to whether votes have been artificially increased or decreased, but this is a

matter for further research.
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Table 1: Effect of Shifting Second Digits on 2BL Digit Means

digit order 2BL mean
0 1 2 3 4 5 6 7 8 9 4.187390
1 2 3 4 5 6 7 8 9 0 4.337416
2 3 4 5 6 7 8 9 0 1 4.461716
3 4 5 6 7 8 9 0 1 2 4.558196
4 5 6 7 8 9 0 1 2 3 4.624448
5 6 7 8 9 0 1 2 3 4 4.657676
6 7 8 9 0 1 2 3 4 5 4.654594
7 8 9 0 1 2 3 4 5 6 4.611298
8 9 0 1 2 3 4 5 6 7 4.523083
9 0 1 2 3 4 5 6 7 8 4.384182

0 1 2 3 4 5 6 7 8 8 4.102392
0 1 2 3 4 5 6 7 7 8 4.014822
0 1 2 3 4 5 6 7 7 7 3.929825

Notes: For digitsdj in the displayed orderingj = 0, . . . , 9, and 2BL probabilitiesqj , the
displayed 2BL mean is

∑
9

j=0
djqj.



Table 2: Simulated Vote Switching: Observed Mean vs. 2BL Mean

Second-digit Mean Minus 4.187
Receiver (cand. 1) Donor (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 −.06 −.07 −.07 −.06 −.07 −.06
0.05 .01 .01 .01 −.07 −.07 −.06
0.1 .05 .04 .04 −.07 −.06 −.06

0.15 −.06 −.07 −.07 −.07 −.07 −.08
0.2 −.33 −.32 −.32 −.14 −.12 −.10

0.25 −.20 −.19 −.20 −.12 −.14 −.13
0.3 −.22 −.22 −.23 −.14 −.13 −.13

0.35 −.43 −.44 −.43 −.12 −.13 −.12
0.4 −.93 −.94 −.94 −.03 −.09 −.05

0.45 −.35 −.34 −.33 .00 .02 .01
0.5 .17 .17 .18 .09 .09 .10

t-statistic
Receiver (cand. 1) Donor (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 −0.5 −0.8 −1.1 −0.5 −0.7 −1.0
0.05 0.1 0.1 0.2 −0.5 −0.6 −0.8
0.1 0.4 0.4 0.6 −0.4 −0.6 −0.7

0.15 −0.4 −0.7 −1.2 −0.4 −0.6 −0.9
0.2 −2.5 −3.5 −4.8 −0.7 −0.8 −1.0

0.25 −1.5 −2.3 −3.3 −0.6 −0.9 −1.3
0.3 −1.7 −2.6 −3.6 −0.6 −0.8 −1.0

0.35 −3.2 −4.8 −6.8 −0.4 −0.7 −0.9
0.4 −7.0 −11.3 −14.4 −0.1 −0.4 −0.3

0.45 −3.2 −4.3 −5.6 0.0 0.1 0.1
0.5 1.5 2.3 3.4 0.2 0.3 0.5

Notes: Simulated second-digit mean minus the 2BL expected value 4.187, averaged over 250
Monte Carlo replications. Fraction denotes the proportionof votes shifted from the donor
candidate to the receiver candidate. The top number in each column shows the number of
precincts used in the referent simulation.



Table 3: Voter Turnout: Machine Technology, Machines per Voter and Precinct Racial Composi-
tion Regressors

DRE Punchcard
Variable Coef. SE t-ratio Coef. SE t-ratio

(Intercept) 0.26 0.0318 8.17 0.754 0.0221 34.1
Machines per Registered Voter 74.60 7.0100 10.60 38.600 2.6900 14.3
Proportion African American −0.98 0.0438 −22.40 −0.851 0.0380 −22.4

Optical Central Cuyahoga
Variable Coef. SE t-ratio Coef. SE t-ratio

(Intercept) 0.976 0.0432 22.60 0.630 0.0289 21.80
Machines per Registered Voter23.500 6.3300 3.71 −10.100 3.2100 −3.13
Proportion African American −0.689 0.0545 −12.70 −0.371 0.0201 −18.50

Optical Precinct Hamilton
Variable Coef. SE t-ratio Coef. SE t-ratio

(Intercept) 0.783 0.0976 8.020 0.212 0.167 1.27
Machines per Registered Voter−5.770 14.3000 −0.402 117.000 17.500 6.67
Proportion African American −2.360 0.2630 −8.940 −0.610 0.044 −13.90

Notes: Robust (tanh) overdispersed binomial regression estimates. For each precinct or ward, the
dependent variable counts the number of registered voters voting versus the number of registered
voters not voting. DRE precincts: LQDσ = 4.82;tanh σ = 4.66;n = 1, 535; 7 outliers. Optical
Central precincts: LQDσ = 3.91;tanh σ = 3.92;n = 807; 6 outliers. Optical Precinct precincts:
LQD σ = 3.08;tanh σ = 3.11;n = 139; 1 outlier. Punchcard precincts: LQDσ = 4.51;tanh
σ = 4.26;n = 5, 478; 28 outliers. Cuyahoga precincts: LQDσ = 3.67;tanh σ = 3.53;
n = 1, 411; 15 outliers. Hamilton precincts: LQDσ = 4.14;tanh σ = 4.10;n = 979; 4 outliers.
Punchcard precincts exclude Cuyahoga and Hamilton precincts.

Table 4: Candidate Vote Second Digits Regressed on Voter Turnout Weights, Ohio 2004

Bush Kerry
Variable Coef. SE t-ratio Coef. SE t-ratio

(Intercept) 4.360 0.0291 149.6 4.410 0.0287 153.6
One Minus Turnout Weight −0.649 0.2260 −2.9 0.134 0.2220 0.6

Notes: Ordinary least squares regression estimates. For each precinct or ward, the dependent
variable is the second significant digit of the respective candidate’s vote count. Bush: RMSE=
2.87;n = 10, 240. Kerry: RMSE= 2.84;n = 10, 336.



Table 5: Ballots in the 2004 Russian Presidential Election

Regions Territories
Category Coef. SE t-ratio Coef. SE t-ratio

Nonabsentee Valid Ballots (H1)−4.04 0.057 −70.9 −4.12 0.0147 −281
Invalid or Lost Ballots (H4) 0.373 0.0178 21.0 0.397 0.00479 82.9
Absentee Certificates (H5) −4.21 0.0475 −88.6 −4.23 0.0137 −308
Nonvoted Ballots — — — — — —

Notes: Robust (tanh) overdispersed binomial regression estimates. The dependent variable is the
count for each category in each UIK. The only regressor in themodel is the intercept for each
category, estimates for which appear in the table, with Nonvoted Ballots being the reference
category. Regions: LQDσ = 53.8;tanh σ = 46.5;n = 89; 20 zero weights. Territories: LQD
σ = 13.6;tanh σ = 11.7;n = 2, 755; 648 zero weights.

Table 6: Russia 2004 Outlier Weight Statistics

Regions
Regions Included UIKs

weights H1 H4 H5 H1 H4 H5
w < 1 2 1 42 28,547 2,921 2,559
w = 0 1 0 19 23,892 0 3,214

Territories
Territories Included UIKs

weights H1 H4 H5 H1 H4 H5
w < 1 157 69 1,425 29,777 2,670 3,837
w = 0 42 4 602 20,264 146 1,358

Notes:w denotestanh weights from the four-category robust overdispersed multinomial model
for constant proportions (intercept only).w < 1 if the absolute studentized residual|r| ≥ 1.88,
w = 0 if |r| > 4.



Table 7: Russia 2004, Putin Vote Counts’ Second-digit Regression Estimates

Category Coef. SE t-ratio

(Intercept) 4.0816 .015 279.3
XH1 Region 0.0666 .023 2.9
XH1 Territory 0.0454 .023 1.9
XH4 Region −0.6166 .205 −3.0
XH4 Territory 0.0568 .137 0.4
XH5 Region −0.5260 .054 −9.8
XH5 Territory 0.0374 .065 0.6

Notes: Ordinary least squares regression estimates. The dependent variable is the second
significant digit in the vote count for Putin in each UIK. RMSE= 2.92;n = 95, 129.

Table 8: Russia 2004, Vote Proportions by Outlier Weight Categories

Region Weight Categories
H1 H4 H5

Candidate w = 1 w = 0 w = 1 w = 0 w = 1 w = 0
Putin .411 .612 .452 — .459 .410
Haritonov .083 .082 .089 — .091 .044
Hakamada .027 .020 .025 — .023 .049
Malyshkin .012 .013 .013 — .014 .007
Mironov .005 .005 .005 — .005 .004
Glaz’ev .027 .027 .027 — .026 .038
Against All .024 .020 .023 — .021 .039

Territory Weight Categories
H1 H4 H5

Candidate w = 1 w = 0 w = 1 w = 0 w = 1 w = 0
Putin .441 .532 .457 .497 .458 .440
Haritonov .089 .088 .089 .037 .089 .075
Hakamada .026 .022 .025 .036 .025 .029
Malyshkin .013 .013 .013 .007 .013 .011
Mironov .005 .005 .005 .003 .005 .004
Glaz’ev .028 .022 .027 .028 .026 .031
Against All .023 .020 .022 .025 .022 .025

Notes: Number of votes for each candidate in each category divided by the number of eligible
voters.
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Figure 1: Vote counts and proportions (one percent sample),2004: Putin
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Figure 2: Vote counts and proportions (one percent sample),2004: Haritonov
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Figure 3: Second-digit means (robust weight model), 2004: intercept
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Figure 4: Second-digit coefficients (robust weight model),2004: turnout
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Figure 5: Second-digit means (robust weight model), 2004: turnout outliers
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Figure 6: Second-digit coefficients (robust weight model),2004: invalid/lost ballots
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Figure 7: Second-digit means (robust weight model), 2004: invalid/lost ballot outliers
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Figure 8: Second-digit coefficients (robust weight model),2004: absentee certificates
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Figure 9: Second-digit means (robust weight model), 2004: absentee certificate outliers


