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Abstract

I show how election results may be used to calibrate a test that compares the second digits
of a set of precinct-level vote counts to the frequencies expected according to Benford’s law.
For the votes cast for two competing candidates, the calibration is accomplished by tuning a
simulation mechanism that mixes normal and negative binomial distributions so that the first
two moments of the simulated distribution match the moments observed in a set of precincts.
I illustrate the method using data from the counties that had the ten largest values of the digit
test statistic for the major party candidates in the 2000 and 2004 U.S. presidential election.
Calibration suggests that the peculiar features of the joint distribution of candidate support
and precinct sizes explain several of the large test statistic values. I show that artificial
manipulations can significantly increase the test statistic’s value even relative to the increased
distribution the tuned mechanism is producing. So the test can sometimes detect systematic
distortions in vote counts even when the baseline mechanism does not produce counts that
have digits that are distributed as specified by Benford’s law.
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Introduction

Concerns about the accuracy of election results have become highly salient in recent years.
Controversial outcomes and other developments have increased awareness about the
shortcomings of contemporary voting technologies and election administration procedures. Many
are skeptical about electronic voting machines or vote tabulation equipment, and considerable
expert attention has focused on concerns about security (Brennan Center for Justice 2006a,b).
Efforts to improve accuracy in a sense begin with efforts to improve the usability of ballots and
other basic election materials (Norden, Creelan, Kimball, and Quesenbery 2006). But to help
build confidence in elections it is also important to have reliable methods for detecting when
election results are not accurate. Some have emphasized the need to make vote tabulations
auditable, a concept that crucially involves the idea that paper records exist that are recounted by
hand, based on a statistical plan to control the probability that an incorrect outcome is detected
(Holt 2007). But mistabulation is only one way inaccurate election results can occur.
Administrative failures can cause delays and other polling place problems that contribute to
deficient results (e.g. Mebane 2005). Other kinds of manipulation are also conceivable.

In this paper I focus on a statistical measure intended to detect irregular election results. The
measure is based on precinct-level tabulations of the votes recorded in an election, and in
particular on the second digits of those precinct vote counts (Mebane 2006b). In previous work I
have treated such tests in relation to formal generalities taken from statistical theory, but it is
questionable whether those generalities always apply to real electoral contexts. In this paper I
show how we can use election results to calibrate the digit test. This approach disconnects the
digit test from the formal generality of Benford’s law and instead ties it to an explicit descriptive
model. The method allows the digit test, when applied to a particular locality, to be tied to the
actual history and contents of recent elections in the same or similar jurisdictions. The digit test
has promise as a screening device, useful for identifying places where it is worthwhile to deploy
more intensive, expensive and time-consuming investigative resources. Calibration methods such
as I introduce here should help make the test more efficient in such applications.

Under the heading of election forensics I have been working to develop a collection of
methods for statistically assessing the reported results of elections to try detect irregularities and,
perhaps, to diagnose fraud. Some of this work traces back to the 2000 U.S. presidential election,
in response to which I developed methods for robustly estimating regression models for vote
counts and for detecting outliers relative to the specified models (Wand, Shotts, Sekhon, Mebane,
Herron, and Brady 2001; Mebane and Sekhon 2004). Such methods can be useful when in
addition to vote counts there are observed covariates to which the recorded votes may reasonably
be related. So votes for candidates in precincts may be related to precinct-level partisan
registration information, or votes for one office may be related to votes for another office. I used
these methods extensively in a study, commissioned by the Democratic National Committee, of
voting in Ohio during the 2004 presidential election (Mebane and Herron 2005).

More recently I have been studying a set of tests that are based on examining the digits of
reported vote counts. The idea is that the second digits of vote counts reported for individual
precincts should be expected to follow a distribution specified by Benford’s law (Mebane
2006a,b). The basic idea is that in a collection of precinct-level vote counts, each of the possible
second digits from 0 to 9 should not occur equally often, but instead the higher digits should
occur less frequently. Zero should occur twelve percent of the time and nine should occur 8.5



percent of the time, with particular intermediate frequencies expected for the intervening digits. |
refer to this expected distribution as the 2BL distribution and to the associated tests as 2BL tests.
In Mebane (2006b) I demonstrate two theoretical mechanisms that match how votes are cast and
that produce counts with 2BL-distributed digits. I also show that when counts simulated using
such mechanisms are manipulated in ways that resemble ways fraud might be committed, tests
often show significant departures from the 2BL pattern. I also find a generic reason why the digit
pattern will not occur in vote counts at the level of voting machines or ballot boxes even when the
pattern holds for precincts. Hence there is a plausible theoretical basis for believing 2BL tests
may be useful for detecting circumstances where precinct vote counts have been artificially
manipulated.

The promise of the digit test has so far been supported by a range of applications to election
data from the United States, although by no means have all the possible questions about it been
resolved. An application to vote counts from the 2004 election in several counties in Florida
shows only one significant departure from the 2BL pattern across the precinct vote counts
recorded on election day and during early voting for 120 different offices and consitutional
amendments (Mebane 2006b). In Mebane (2006c¢) I apply the test to precinct-level vote counts
for president, using data from the 2000 and 2004 elections from all across the U.S. Across more
than 1,700 counties and 130,000 precincts in each year, I find 14 counties in 2000 and 16 counties
in 2004 that depart significantly from the 2BL pattern. The departures in some instances occur in
counties that are notorious (e.g., Cook and DuPage in Illinois) or large (Los Angeles, California),
and in a couple of instances they are in places that are small and obscure (Latah, Idaho). By and
large the message seems to be that the digits in precinct-level vote counts for the major party
presidential candidates are for the most part 2BL-distributed. Vague notoreity notwithstanding, it
is not clear why there are significant departures from the 2BL pattern in the relatively few places
where 2BL does not hold.

The digit test has also produced interesting results when applied to election data from other
countries. In Mebane (2006b) I show there are a number of significant departures from the 2BL
distribution among precinct-equivalent (seccion) vote counts in the 2006 Mexican presidential
election, and in Mebane (2007a) I show that many of the deviations are related to maneuvers
announced by at least one presidential candidate and to variations in the party affiliation of
municipality mayors. The digit test strongly suggests there were extensive irregularities in the
controversial 2001 election in Bangladesh (Mebane 2007b). Very recent applications show no
significant departure from the 2BL distribution in votes for the 2004 Puerto Rican general election
at the unidad level for governor or resident commisioner, in polling station level votes for the first
round of the 2006 Ecuadorean presidential election, or in votes at the centro level for the 2006
Venezuelan presidential election (Scherer 2007). Even more recent applications show some
significant departures from the 2BL distribution: village-level vote counts for the second round of
the 2004 Indonesian presidential election; centro-level vote counts for the 2006 Nicaraguan
general election; polling station vote counts for the second round of the 2003 Armenian
presidential election; and polling station vote counts in several provinces in the 2004 and 2006
Canadian federal elections. In all of these elections where vote counts at lower levels of
aggregation are available (e.g., ballot box counts), tests strongly reject the hypothesis that the less
aggregated counts satisfy the 2BL distribution.



The Need to Calibrate the Distribution of 2BL Test Statistics

With one exception, all these assessments of whether vote counts satisfy the 2BL distribution
have used a simple chi-squared statistic to check whether the observed frequency of the second
digits matches the 2BL proportions. The exceptional instance is Mebane (2007a), where (inspired
by Grendar, Judge, and Schechter 2007) I also compare the arithmetic mean of the second digits
to the mean value expected if the digits are 2BL-distributed. All of the applications of the
chi-squared test compare the observed values of the test statistic to the formal chi-squared
distribution given by statistical theory. If the observed test values are larger than particular critical
values identified by statistical theory, then the conclusion is that the 2BL distribution does not
characterize the referent vote counts.

Such an approach would be satisfactory if the second digits of vote counts had properties that,
at this point, it is not clear that they have. For instance, if the digits were independently generated
according to a multinomial distribution, given the number of precincts, then as long as the number
of precincts being considered were reasonably large, it would be appropriate to use the formal
chi-squared distribution to assess statistical significance. But it is well known that if the vote
counts themselves are generated independently with a Poisson or a negative binomial distribution,
then their second digits will not satisfy the 2BL distribution. The mechanisms introduced in
Mebane (2006b) that produce counts that have 2BL-distributed second digits are mixtures of two
different distributions. It is not obvious that a multinomial distribution characterizes the digits
those mixtures produce, even less the digits produced by the more complicated real processes
those particular mixtures are intended to represent.

More fundamentally it is not clear that we should always expect the vote counts’ second digits
to follow precisely the 2BL distribution even when there are no anomalies and there is no artificial
manipulation of the counts. No analytical demonstration regarding the second digits’ frequencies
exists, neither in the form of an axiomatic derivation given stated formal properties of vote
aggregations nor in the form of a statistical characterization based on established features of the
processes that produce vote counts. The increasing accumulation of findings that actual vote
counts usually have 2BL-distributed digits is encouraging but plainly not sufficient. Because we
expect fraudulent election outcomes to be rare, at least in elections for federal office in the United
States, it would be good to know whether scattered exceptions are merely the kind of thing that
occasionally happens, or whether particular discrepant digit patterns truly indicate problematic
results. The second-digit test may be useful as a screening device even without having a sharper
general understanding of why there are exceptions, but obviously it would be better to know more.

Pending improved analytical models, we can take as starting points the two mechanisms
introduced in Mebane (2006b). If we start by treating these mechanisms as fundamental, then
there are compelling reasons to be skeptical that the 2BL distribution is always relevant. The first
mechanism (designated mechA) represents a situation where precinct size is constant but both the
support for a candidate and the rate at which votes are cast incorrectly vary across precincts. The
motivation here is that if such a mechanism produced 2BL-distributed digits for every precinct
size, then the mechanism might explain why the 2BL pattern occurs in real situations where
precinct sizes vary. But simulations show that for some expected rates of support for the
candidate and some precinct sizes, there are significant departures from the 2BL pattern (Mebane
2006b, Table 5). The second mechanism (designated mechB) represents a situation where all
votes are cast correctly, but both the support for a candidate and the sizes of the precincts vary. In



this case simulations show that the 2BL pattern always occurs if the variation in support for the
candidate across precincts is sufficiently large, combined with sufficient variation in the precinct
sizes. One issue in this case is that in real situations the variations need not be as large as the
simulations suggest is necessary to guarantee the 2BL pattern.

For both mechanisms, then, we have situations where small changes in the parameter values
used to define the mechanisms can sometimes produce significant changes in the distribution of
the second digits of the counts the mechanisms produce. In the simulations reported in Mebane
(2006b), the departures from the 2BL pattern that are associated with such parametric variations
are nowhere near as large as those often associated either with examining the counts at too low a
level of aggregation (e.g. Mebane 2006b, Table 7) or with artificial vote switching (e.g. Mebane
2006b, Table 12). Therefore very large values of the test statistic may well reflect one of those
conditions. Nonetheless there are significant prospects for confusion between departures from the
2BL pattern that simply reflect the genuine pattern of support for a candidate or the particular
pattern of precinct sizes in a jurisdiction and departures caused by manipulation.

My idea for this paper is to use a version of one of the mechanisms to investigate how we may
expect the 2BL-test statistics to vary across electoral jurisdictions, given the variations in precinct
sizes and vote support observed in each one. The idea is to take the precincts and votes recorded
in an election and use those numbers to calibrate the mechanisms. To the extent that vote counts
simulated using the calibrated mechanisms deviate from the 2BL pattern, we can think about
using the calibrated second-digit frequencies as the expected baseline frequencies instead of the
2BL pattern. Even if the expected second-digit frequencies match the 2BL pattern, it may be that
calibrating simulations show that the distribution of 2BL-test statistic values does not match what
the formal chi-squared distribution specifies. In this case it may be useful to use the calibrated
distribution to conduct statistical tests for departures from the expected digit pattern.

Calibrating the Distribution of 2BL Test Statistics

There are a number of calibration approaches that use data from an actual election in various
ways, but the first step in each case is to find parameter values for the referent mechanism that
allow the mechanism to match chosen aspects of the observed data. In the approach I consider
here, I start by finding parameter values so that the mean and variance of the candidate support
proportions the mechB mechanism produces match the mean and variance in an actual set of vote
counts. Then I specify a distribution for precinct sizes (the total number of ballots cast) that
matches the observed dependence between the sizes and the candidate support proportions. Tuned
in such a fashion, the mechanism can then be used to simulate vote counts, and the distribution of
the 2BL test statistic can be computed from the simulated values. The logic is essentially that of a
parametric bootstrap.

The point of departure for the calibration is a version of mechB that generates counts
simultaneously for two candidates. For a set of precincts indexed by ¢, the raw materials for this
two-candidate mechanism are a set of bivariate normal pseudorandom numbers (denoted (x;, y;))
and a set of numbers uniformly distributed on the interval from zero to one (denoted ¢;):

(24, i) ~ N (g, fy; Oy Oy, P)



The parameters i, and p,, denote the means of x and y, o, and o, denote their variances, and p is
the correlation between x and y. The (z;, y;) values are used to generate proportions of support
for each candidate in precinct i:

exp(x;)
Pzi =
exp(z;) + exp(y;) + 1
€XPlY;
Pyi = ( )

exp(z;) +exp(y;) +1°

The p,; and p,; values are the proportions of voters in precinct ¢ who vote, respectively, for each
candidate. Notice that p,; + p,; < 1: the mechanism accommodates ballots that lack a vote for
either candidate. To get the number of votes for each candidate we fix a maximum number of
potential votes in each precinct, denoted M, so that | M g; | corresponds to the number of ballots
cast in precinct 7. The simulated counts of votes for the candidates are

Ryi = LM QipyiJ .

To tune this mechanism to the distribution of votes recorded for two candidates running
against one another in precincts of a county, I use the R (R Development Core Team 2005)
function n1minb to find the values for the parameters (i, ft,, 05, 0y, p) that make the mean and
covariance matrix of p, and p, equal the mean and covariance matrix of the vote proportions
actually observed for the candidates across precincts. The mean and covariance matrix of p, and
py are formally

pe = / / exp(®)/(exp(z) + exp(y) + 1)(z, y)dzdy
By = / / exp(y)/ (exp(a) + exply) + 1)(x, y)dedy

_ _ !/
Up, Upzy _ // [px - p:c:| |:px - px} x dzd
L}pzy Upy} Py = Py] [Py — Py #a.y)drdy
where ¢(z,y) is the bivariate normal density function for mean and covariance parameters
(W, fy» Ty Oy, p)." Tuse n1mind to find the parameter values (fi, fi,, 6., 0y, p) that minimize

the sum of the absolute differences between p,, p,, vp,, Up,, Vp,, and the corresponding moments
observed across each county’s precincts. To find starting values for the n1minb optimization, |

IThe integrals lack analytical solutions and so must be solved numerically. I use an iterated application of R’s
integrate function to do this. An alternative method using the adapt package takes slightly longer to compute
for no discernible gain in accuracy.



approximate the mean and covariance matrix of p, and p, by the quick-to-compute

Pr = exp(pta) /(exp(pz) + exp(py) + 1)
Dy = exp(py)/ (exp(piz) + exp(py) + 1)
{@pm QZpy:| _ [ﬁx(l —Dz)  —Daby } [Um ny] [ﬁx(l —Dz)  —Daby

61190.1/ Upy _ﬁyﬁﬂc ﬁy (1 - ﬁy) Ozy Oy _ﬁyﬁx ﬁy (1 - ﬁy)

/

where 0, = (axay)lﬁp. I use rgenoud (Mebane and Sekhon 2005; Sekhon and Mebane 1998)
to find the parameter values that minimize the sum of the absolute differences between p, p,, Uy, ,
Up, » Up,, and the corresponding observed moments.

The specification of uniformly distributed precinct sizes in mechB ignores possible
dependence between precinct sizes and the candidates’ support across precincts as well as the
possibility that precinct sizes vary more or less than a uniform distribution would imply. To
obviate these limitations I use a negative binomial model to specify a distribution of simulated
precinct sizes. The mean size for each precinct is given by the forecast from a negative binomial
regression model where the total number of ballots cast is the dependent variable and the
proportion of the votes cast for each of the two candidates are the regressors. I also include as a
regressor the product of the vote proportions.? This estimation gives a set of regression
coefficients (bg, by, b2, b3) and an estimated dispersion parameter (¢). The mean precinct size
given candidate vote proportions p,; and p,,; is therefore accurately approximated by
exp(bo + b1pai + bapyi + bspaibyi), s0 that m = exp(by + bip, + b2py, + bsp.py,) equals the
unconditional mean precinct size.

For a set of precincts indexed by 7, the tuned mechanism uses a set of bivariate normal
pseudorandom numbers and a set of negative binomial pseudorandom counts:

(xia yl) ~ N(ﬂa)v ﬂyy a-l’a a-yna)

exp(7;)
Dzi =
exp(z;) + exp(y;) + 1
exp(y;)
DPyi = (

exp(z;) + exp(y;) + 1
m; ~ NB(exp(by + b1py; + bapyi + bspaipyi); 6) -

The negative binomial specification implies that the conditional means of the values m; given p,;
and p,; and the overall variance of these simulated precinct sizes match the conditional means and
overall variance in the data observed for the referent county. The simulated counts of votes for the
candidates are

Zai = Lmzp:mJ

Zyi = [mipyi] -

’I use the function glm.nb from R’s MASS package (Venables and Ripley 2002) (with the default options) to
estimate the model.



Calibrating 2BL Tests for the 2000 and 2004 American Presidential Elections

I illustrate this calibration idea using precinct data from the 2000 and 2004 presidential elections.
I focus on the 2BL test statistic X2, = Z?:o(”a‘ — Nr;)?/(Nr;), where N is the number of
precincts having a vote count of 10 or greater (so there is a second digit), n; is the number having
second digit j and r; denotes the proportion expected to have second digit j according to the 2BL
distribution: (rg,...,r9) = (.120,.114,.109,.104, .100,.097,.093, .090, .088, .085). Using the
chi-squared distribution with nine degrees of freedom for a test of no departure from the expected
values gives a critical value for this statistic of 16.9 for a test at level a = .05.

I begin with results from my (Mebane 2006c) application of the 2BL test to precinct-level data
from the 2000 and 2004 elections from all across the U.S. From the more than 1,700 counties and
130,000 precincts tested in that analysis in each year, I focus on the counties that had the ten
largest values of X2, for, respectively, Gore or Bush in 2000 or Kerry or Bush in 2004. The 2BL
test statistics for these counties are reported in Table 1.> Fewer than twenty counties are shown
for each year because some counties have a large statistic value for both candidates (e.g., Cook).*
Several of the X35, values are much larger than the nominal critical value of 16.9: 24 of the 36
values in 2000 and 21 of the 38 values in 2004 are greater than 20. A few statistic values are large
even if we control the false discovery rate (Benjamini and Hochberg 1995) over all the statistics
computed for either candidate in each year. With 1,726 counties available to be analyzed in 2000
and 1,743 counties in 2004, Bonferroni-adjusted test levels imply critical values of approximately
38.4 in each year. Seven statistics, all for Democratic candidates, are larger than that. The largest
values in each year occur in Los Angeles, for the Democratic candidates: X35, = 54.8 for Gore
and X35, = 70.2 for Kerry.

*** Table 1 about here ***

Table 2 reports the moments of the candidate vote proportions to which the parameters
(fig, f1y, 04,0y, p) are to be calibrated. The means in the counties range from lopsidedly
Democratic (Philadelphia, Pennsylvania) to roughly balanced (Iosco and Manistee, Michigan) to
lopsidedly Republican (Utah, Utah). Most of the covariances imply correlations between the
opposing candidates’ proportions more negative than —.99.

*** Table 2 about here ***

Table 3 reports the parameter values used to tune the mechanism to match the moments in
Table 2. The most notable feature of these values is that the variance parameters are typically
small. Simulations using mechB done as part of the analysis reported in Mebane (2006b) found
that a variance of 1.0 or larger was generally needed to guarantee that simulated vote counts have
2BL-distributed second digits. But only 27 of the 72 calibrated variance parameters in Table 3 are
greater then 0.1. With two exceptions the calibrated value p is negative.

*#% Table 3 about here ***
Table 4 reports the point estimates for the parameters of the negative binomial regression

3The precinct data for the counties shown in Table 1 were obtained from Dave Leip (http://www.uselectionatlas.org)
except as follows. For Ohio in 2004 I use data collected as part of the DNC study (Mebane and Herron 2005). For
Pennsylvania in 2004 I use data obtained from the Pennsylvania State Election Commission (in a file named PA-
2004G-Presidential.xls). I downloaded data for Cook County, IL, in 2004 from Cook County and Chicago election
board websites. For Cook County in 2004 the number of ballots cast is not available, so the analysis uses the total
number of ballots cast for either Kerry, Bush or Badnarik.

“Due to the small number of precincts (3) that have a vote count larger than 9 for Gore, I omit results for Powder
River, Montana, from the subsquent analysis.



models for the sizes of the precincts in each county. The estimates vary considerably across
counties. Although not reported in the table, most of the coefficient estimates are statistically
significant, and all but two of the estimates for f are significantly greater than 1.0.> Hence
overdispersion typically characterizes the precinct sizes in these counties.

*** Table 4 about here ***

Using Monte Carlo simulation to compute the distribution of X35, for the counts produced by
each of the tuned mechanisms suggests that the peculiar features of the joint distribution of
candidate support and precinct sizes explain several of the very large statistic values. I replicate
each of the tuned mechanisms 5,000 times, computing for each replication the mean and 95th
percentile value of X2, . Table 5 shows that for several counties that have large observed X35,
values, the mean of the simulated statistic is much larger than the nominal critical value of 16.9,
and sometimes it is nearly as large or larger than the observed statistic. Good examples of this are
the values for Gore in Los Angeles, Summit and Philadelphia, for Kerry in Cook, and for Bush in
Los Angeles (2000) and Cook. More importantly, the 95th percentile value of the statistic is larger
than the observed statistic in several noteworthy instances where the observed statistic is greater
than 16.9. There are six instances of this in 2000 (Gore and Bush in Los Angeles, Bush in Cook,
Gore in DuPage, Summit and Philadelphia) and two in 2004 (Kerry and Bush in Cook, Kerry in
Saratoga). In a few other instances the 95th percentile is not much smaller than the observed
statistic (Gore in Cook and Hendricks, Bush in Philadelphia, Kerry in DuPage and Ramsey).

*#% Table 5 about here ***

These results suggest the test based on X35, does not give much reason to diagnose anomaly
in the 2000 or 2004 presidential election results from “notorious” Chicago (Cook) or the 2000
results from Philadelphia if the distribution of the statistic is assessed in a more appropriate way.
Likewise we might count as resolved the worrisome results from Summit, Ohio, and from Los
Angeles, California, in 2000.

But calibrating the test statistic’s distribution does not change the test’s message about most of
counties being considered here. The largest observed statistic, for Los Angeles in 2004, remains
larger than the calibrated statistic’s 95th percentile, even though that percentile value (30.9) is
much larger than 16.9. There are several other instances where the observed statistic substantially
exceeds the calibrated 95th percentile even though that percentile is substantially greater than
16.9. In 11 instances the difference between the observed statistic and the calibrated 95th
percentile is at least five even though the percentile is itself greater than 20. And in many other
instances the calibrated distribution simply does not differ all that much from the
2BL-distribution.

Using the Calibrated Distributions to Detect Anomalies

A significant caveat regarding the preceding analysis is that, in addition to the idea that the tuned
mechanism is a reasonable descriptive model for the process that produced the vote counts, the
maintained null hypothesis is that the observed vote count data are free of anomalies and have not
been manipulated. If this null hypothesis is wrong, then the tuned mechanism may be giving a
good description of the distribution produced by fradulent or otherwise erroneous processes.
Ideally we would not calibrate the diagnostic device using the very same data we wish to

5Cloud, Kansas, and St. Francis, Arkansas, are the exceptions.



diagnose. So what we have here is merely a demonstration that the tuned mechanism can produce
distributions in which a high proportion of the test statistic values are large. That is, the relative
frequencies of the second digits of the counts the tuned mechanism produces sometimes depart
substantially from the 2BL-distribution.

Using mechanisms that produce counts that have 2BL-distributed digits, an important
contribution of Mebane (2006b) is to show that several kinds of artificial manipulation of the
simulated vote counts produce significant increases in the value of the test statistic. Such
demonstrations help motivate interest in the 2BL-test as an indicator that vote counts may have
been subjected to systematic distortions. A question is whether artificial manipulations also
increase the test statistic’s value relative to the increased distribution the tuned mechanism may
already be producing. If so, the 2BL test may still be able to detect systematic distortions even
when the baseline mechanism does not produce counts that have 2BL-distributed digits. Such a
result may also give us leverage to assess whether the data used to do the calibration are distorted.
Such might be the conclusion if certain patterns of artificial manipulation produce substantially
smaller test statistic values, and if these manipulations plausibly describe the reversal of some
pattern of systematic distortion.

Here I wish only to demonstrate that the 2BL test can be sensitive to artificial manipulations
even when the tuned mechanism is already producing large test statistic values. To do this I use
two versions of one of the simulated manipulations used in Mebane (2006b), namely the
simulated repeaters scenario. The mean number of votes expected in a precinct for candidate x
under this paper’s tuned mechanism is p,m. I let the condition that a precinct’s simulated vote
count is greater than that average be the trigger for the precinct to be manipulated. That is, if
Zzi > PgM, then both z,,; and z,; are replaced with alternative values, denoted 2}, and Zyi- One
version of this manipulation is the “plus” scenario: an amount equal to five percent of the
expected precinct size is added to z,; and the same amount is subtracted from z,,. That is, for
¢ =.05m, z}; = 2, + cand z;; = max(z,; — ¢, 0). The other version of this manipulation is the
“minus” scenario: the adjustment amount is subtracted from z,; and added to z, i.e.,
2y = max(z, — ¢, 0) and z;; = z,; + c. These manipulations may be considered an idealized
vote-switching scenario, or we may simply focus on each candidate separately with the idea that
votes are being systematically gained or lost by a candidate in precincts where one candidate’s
realized strength is relatively high. For instance, the “minus” scenario might represent a situation
where candidate = tends to lose votes in precincts where x has strong support, because those who
favor x are especially challenged by defective voting equipment.

Implementing these manipulations shows that they significantly increase the test statistic in
most of the larger counties for at least one of the candidates. Table 6 reports the mean X3, value
when the votes for each of the presidential candidates, respectively, are used to trigger the
precinct-level manipulation; i.e., each candidates’ vote counts are respectively used in the place of
Z;)- In many instances the mean of X35, is larger than the 95th percentile value produced by the
corresponding unmanipulated tuned mechanism. Two sets of results are particularly noteworthy.
First, the three Illinois counties in the vicinity of Chicago (Cook, DuPage and Lake) all show
significant increases in X35, under either the plus or the minus scenario for the candidate whose
votes are triggering the manipulation. This suggests that analogous gains or losses may be the
reason several of the observed test statistic values for these counties exceed the 95th percentile
values the tuned mechanism produces. Also noteworthy are the significant increases in X35, for
Los Angeles in 2004. None of the manipulated X275, means are as large as the observed test
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statistic, even though several are larger than the corresponding unmanipulated 95th percentile
value. If we maintain the presumption that the tuned mechanism does apply, then these results
suggest that some kind of distortion other than five-percent gains or losses of votes is present in
the 2004 Los Angeles vote counts.®

*** Table 6 about here ***

The many instances in Table 6 where the mean of the test statistic is not especially large are
also interesting. In fact the modal mean value is very near 9.0, which is the expected value if the
counts’ digits are 2BL-distributed. While it may be tempting to explain these results as a
reflection of the relatively small numbers of precincts in many of these counties, recall that all the
counties included in this analysis are ones that have large observed X 25, values. It is possible
that the tuned mechanism is generally insensitive to plausible distortions given these counties’
tuning parameters, but the limited demonstration here is not sufficient and not intended to
investigate this.

There is one instance where the test statistic for the manipulated data is smaller than the
distribution produced by the tuned mechanism would lead us to expect. This is the mean X35,
value for Bush under the “4- Kerry” scenario in Cook in 2004, which equals 29.2. That value is
much smaller than the corresponding mean in Table 5. Indeed, the value is less than the Sth
percentile of the distribution produced by the unmanipulated tuned mechanism, the value of
which is 37.5. The reason this value is interesting is the idea that maybe the correct values for
Bush’s votes in Cook in 2004 are the ones produced after roughly ¢ = .05m votes are subtracted
from the observed counts in the precincts where Kerry is observed to have received the most votes
(i.e., more than m). To assess this we should generate the distribution of the test statistic given the
“+ Kerry” manipulation to determine that distribution’s 95th percentile value. That 95th
percentile is 44.7. So the mean of the unmanipulated tuned mechanism, reported in Table 5 as
61.8, is much greater than we would expect if the reduced vote counts for Bush were the correct
counts. This example illustrates the kind of so-to-speak “reverse engineering’” analysis the
calibration method may support. The analysis is naturally speculative. A perplexing wrinkle is
that the observed test statistic for Bush in Cook 2004 is itself slightly smaller than the mean
statistic for Bush given the “+4 Kerry” manipulation. The distribution with the votes for Bush
artificially reduced in this respect matches the actual data.

Future Directions

The calibration approach frees tests of the digits of vote counts from the distribution given by
Benford’s law. The advantages of this are apparent in relation to places such as Los Angeles,
Chicago and Philadelphia in 2000, where large 2BL test statistics no longer appear so significant
when the distribution of the test is assessed using the tuned mechanism. Calibration may in
general be expected to reduce the frequency of false positive results from the 2BL test.

The calibration approach needs further development. At least two directions are apparent for
useful future work.

Larger versions of the plus and minus scenarios seem not to come closer. Increasing to a ten percent
manipulation—i.e., ¢ = .10m—in the plus scenario produces a mean X3, value of 35.5 for Kerry’s votes. Such
an increase in the minus scenario produces a mean of 51.6, but increasing to a fifteen percent manipulation produces
a mean of 25.1.
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First there are questions about the mechanism being tuned to compute the test statistics’
distribution. The mechanism illustrated in this paper is a mixture of normal and negative binomial
distributions. This mechanism successfully matches the first two moments of an observed
distribution of precinct vote statistics, namely the joint distribution of the relative support for
candidates and the number of ballots cast across precincts. Naturally there are productive
questions about whether these are the most appropriate data to consider; e.g., perhaps the number
of registered voters would be better than the number of ballots cast.

But more fundamentally we should ask whether matching the first two moments is sufficient.
For instance, distributions of precinct sizes often feature substantial gaps and skew: in a county
there may be a scattering of very small precincts, a few very large ones, and most of the precinct
sizes are in the middle. The negative binomial distribution conditioned to the distribution of
support for the candidates is unlikely to capture such features of the precinct data. Likewise there
are often gaps across and dependencies between different precincts in the distribution of the
candidates’ support. How many of these details of the precinct distributions do we need to build
into the simulation mechanism? The high proportion of counties in Table 5 that have observed
test statistics that exceed the 95th percentile of the distribution produced by the tuned mechanism
suggests that it is important to tie the simulation mechanism even more closely to the data. Doing
so will raise questions about the feasibility of the necessary computations.

Second, it seems reasonable to move away from working with the X2, statistic, which is
based on the relative frequencies with which second digits occur according to Benford’s law, and
instead to start working directly with the relative frequencies for the second digits that the tuned
mechanisms imply. Such a change may allow us to diagnose particular kinds of error or
manipulation by assessing what kind of simulated distribution comes closest to matching the
observed second digit frequencies. Given a mechanism in which the type and magnitude of error
or manipulation is appropriately parameterized, we might be able to estimate the parameter values
and hence sharply diagnose the error by minimizing some measure of the discrepancy between
the observed and simulated second digit frequencies. Such an approach may be the best way to
develop the “reverse engineering” idea.

Changing to a focus on the second digit frequencies will also facilitate making connections to
work based on families of empirical distributions like the one defined by Grendar et al. (2007).
Following Rodriguez (2004), Grendar et al. define an exponential family of distributions based on
the average of the first significant digits of a set of numbers and the lagrangean of a particular
measure of discrepancy. It is straightforward to apply a similar approach to the average of the
second significant digits, and it would be interesting to use tuned mechanisms to calibrate the
distributions.

The calibration approach frees tests of vote counts from the distribution given by Benford’s
law, but we should not ignore the fact that for most part vote counts appear to be 2BL-distributed
or very nearly so. Quick and easy tests based on X35; may therefore continue to be the default,
with more intensive efforts based on calibration being reserved for places that stand out in the first
round of screening.

One caveat is that systematic distortions may not be equally detectable in different sets of
precincts that all have 2BL-distributed vote counts. Simulations using artificial manipulation of
mechanisms that have been tuned to match the various precinct distributions may help identify the
kinds of electoral configurations for which the digit tests have power to detect distortions.
Especially in the United States, elections among many different kinds of alternatives are
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conducted using the same set of geographic precinct definitions and the same lists of registered
voters. As the distribution of support for the alternatives varies across offices, ballot initiatives or
whatnot, so might the power of the tests. If some precinct configurations are found to support
more powerful tests, then the calibration efforts might also be used when planning electoral maps.
One consideration when designing the groupings (geographic or otherwise) in which votes will be
recorded can be that digit tests to detect distortions have power for those groupings. Auditability
in this sense can be a criterion used to guide the selection of precinct boundaries.
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Table 1: Counties with the 10 Largest 2BL Statistics for Each Candidate, 2000 and 2004 U.S.
Presidential Elections

Gore Bush
2000 County n n>9 XZ n>9 Xig.
CA.Los Angeles 5045 5011  54.8 4930 20.3
ID.Latah 34 31  36.7 34 3.8
IL.Cook 5179 5097 46.7 4145 244
IL.Dupage 714 714  28.0 714  41.6
IL.Lake 403 403  33.7 402  16.1
IN.Hendricks 80 79 203 80 26.0
KS.Cloud 28 19 23.1 28 262
LA Terrebonne 93 89 143 91 269
Ml.Iosco 23 23 5.7 23 238
MN.Crow Wing 59 57 28.5 59 4.3
MT.Powder River 10 3 7.3 10 26.0
NY.Madison 51 51 14.5 51 276
OH.Hamilton 1025 1020 48.7 988 8.9
OH.Hancock 67 67 343 67 9.9
OH.Summit 624 624  31.6 612 11.6
PA Lancaster 225 225 29.1 225 8.3
PA .Philadelphia 1681 1680 29.5 1249 347
WY.Johnson 17 13 7.5 17  26.8
Kerry Bush
2004 County n n>9 Xi; n>9 Xig
AL.DeKalb 77 77 13.1 77 272
AR.St. Francis 22 22 303 22 3.3
CA.Glenn 23 23 2.8 23 279
CA.Los Angeles 4984 4951  70.2 4929 124
CA.Orange 1985 1887  26.2 1904 32.6
CO.Jefferson 324 323 33.0 323 104
FL.Manatee 136 136 12.0 136 28.5
ID.Kootenai 75 75 309 75 121
IL.Cook 4562 4561 445 4026  27.8
IL.DuPage 732 732 352 732 9.1
MI.Manistee 33 33 2.3 33 294
MN.Ramsey 177 177 31.0 177 1.7
NC.Ashe 19 19 300 19 139
NY.Saratoga 193 193  18.7 193  28.3
OH.Summit 475 475 427 474  21.0
PA.Somerset 68 67 9.5 68 273
UT.Davis 213 212 42.6 213 6.0
UT.Utah 247 241 9.2 246 27.6
VA.Washington 20 19 5.5 19 274

Note: n denotes the number of precincts, and n > 9 denotes the number of precincts with a vote
count greater than 9 for the referent candidate.



Table 2: Candidate Vote Proportion Moments

mean variance
2000 County Gore Bush Gore Bush cov
CA.Los Angeles 0.64484 0.31454 0.03097 0.02942 —0.02987
ID.Latah 0.32269 0.56482 0.01244 0.02118 —0.01563
IL.Cook 0.69736 0.27630 0.04125 0.03854 —0.03967
IL.Dupage 0.42082 0.54893 0.00556 0.00605 —0.00574
IL.Lake 0.48551 0.48891 0.02836 0.02717 —0.02770
IN.Hendricks 0.27038 0.70945 0.00317 0.00502 —0.00082
KS.Cloud 0.24813 0.69588 0.00755 0.00808 —0.00694
LA.Terrebonne  0.43225 0.53959 0.04085 0.04208 —0.04126
Ml.Iosco 0.47986 0.46678 0.00259 0.00269 —0.00254

MN.Crow Wing  0.39389 0.53648 0.00704 0.00705 —0.00657
NY.Madison 0.41351 0.52326 0.00346 0.00362 —0.00336
OH.Hamilton 0.45134 0.51548 0.05281 0.05320 —0.05280
OH.Hancock 0.29594 0.67548 0.00538 0.00619 —0.00570
OH.Summit 0.55135 0.41065 0.02167 0.02166 —0.02154
PA Lancaster 0.35702 0.61523 0.02048 0.02212 —0.02121
PA Philadelphia 0.81168 0.16903 0.02472 0.02223 —0.02333
WY.Johnson 0.14055 0.83874 0.00517 0.00549 —0.00525

mean variance
2004 County Kerry Bush Kerry Bush cov
AL.DeKalb 0.29946 0.69317 0.00372 0.00358 —0.00363
AR.St. Francis ~ 0.58568 0.40519 0.03444 0.03362 —0.03393
CA.Glenn 0.32648 0.65704 0.01483 0.01524 —0.01499
CA.Los Angeles 0.64495 0.34197 0.02703 0.02686 —0.02660
CA.Orange 0.39558 0.59274 0.01432 0.01445 —0.01428
COJefferson 0.46735 0.51591 0.00500 0.00552 —0.00524
FL.Manatee 0.45152 0.53808 0.01286 0.01307 —0.01295
ID.Kootenai 0.31419 0.64955 0.00627 0.00683 —0.00648
IL.Cook 0.69801 0.26805 0.04440 0.03737 —0.03521
IL.DuPage 0.44832 0.54295 0.00542 0.00553 —0.00546

MI.Manistee 0.49248 0.47791 0.00755 0.00809 —0.00561
MN.Ramsey 0.65091 0.33554 0.01248 0.01277 —0.01261

NC.Ashe 0.34707 0.64676 0.00847 0.00814 —0.00829
NY.Saratoga 0.45406 0.52337 0.00584 0.00611 —0.00593
OH.Summit 0.55659 0.41964 0.01756 0.02034 —0.01881
PA.Somerset 0.36621 0.62846 0.01569 0.01580 —0.01573
UT.Davis 0.19960 0.77979 0.00423 0.00501 —0.00456
UT.Utah 0.12137 0.85396 0.00173 0.00213 —0.00187

VA Washington  0.32940 0.65055 0.00337 0.00286 —0.00297

Note: Observed first and second moments of the proportions of votes for each candidate.



Table 3: Candidate Vote Proportion Distribution Parameters

2000 County fly fly Oz oy p
CA.Los Angeles 2.7482 1.9051 0.2501 0.2490 —0.7498
ID.Latah 1.0413 1.6299 0.0083 0.3797 —0.3935
IL.Cook 3.2946  2.1201 0.5068 0.3210 —0.7779
IL.Dupage 2.6300 2.9015 0.0099 0.0644 —0.6389
IL.Lake 29317 29424 0.3957 0.1417 —0.1145
IN.Hendricks 2.5759 3.5791 0.0391 0.0577 —0.8842
KS.Cloud 1.4371 2.5222 0.1128 0.0571 —0.4635
LA .Terrebonne  2.6883 2.9549 0.3689 0.4999 —0.1849
MI.Iosco 2.1942 2.1656 0.0064 0.0304 —0.3519

MN.Crow Wing 1.7200 2.0397 0.0723 0.0502 —0.1825
NY.Madison 1.8737 2.1127 0.0286 0.0325 —0.1135
OH.Hamilton 2.5265 2.6970 0.5368 0.5317 —0.3714
OH.Hancock 2.3268 3.1765 0.0135 0.1012 —0.3287
OH.Summit 2.6646 2.3387 0.1500 0.2143 —0.2945
PA .Lancaster 2.5308 3.1308 0.1306 0.3278 —0.0899
PA Philadelphia 3.8843 1.9293 0.6389 0.3008 —0.5489
WY.Johnson 1.8078 3.7161 0.1580 0.0693 —0.6438

2004 County [z fly O oy P
AL.DeKalb 3.6921 4.5559 0.0604 0.0633 —0.6469
AR.St. Francis  4.1474 3.7182 0.3538 0.1530 —0.6050
CA.Glenn 2.9469 3.7012 0.1395 0.1576 —0.2006
CA.Los Angeles 3.9448 3.2179 0.1633 0.2594 —0.6188
CA.Orange 3.5088 3.9405 0.0842 0.0815 —0.7598
CO.Jefferson 3.3305 3.4315 0.0447 0.0475 0.0061
FL.Manatee 3.7660 3.9511 0.0410 0.1085 —0.6858
ID.Kootenai 2.1368 2.8873 0.0353 0.0638 —0.5585
IL.Cook 3.1202 1.9098 0.8164 0.2379 —0.4968
IL.DuPage 3.9361 4.1321 0.0268 0.0472 —0.3476

MI.Manistee 2.8026 2.7704 0.0089 0.0945 —0.6628
MN.Ramsey 3.8696 3.1629 0.0256 0.2228 —0.2546

NC.Ashe 4.0016 4.6541 0.0594 0.0722 —0.6004
NY.Saratoga 3.0001 3.1455 0.0279 0.0498 —0.4747
OH.Summit 3.1857 2.8743 0.0382 0.4246 0.2935
PA.Somerset 4.2150 4.7961 0.1413 0.1705 —0.0746
UT.Davis 2.2570 3.6688 0.0160 0.1382 —0.2613
UT.Utah 1.5567 3.5643 0.0350 0.0724 —0.4909

VA .Washington  2.7954 3.4860 0.0297 0.0301 —0.0792

Note: Parameter values that minimize the absolute difference between the formal and observed
first and second moments of the proportions of votes for each candidate.



Table 4: Precinct Size Negative Binomial Model Parameter Estimates

2000 COlll'lty bo bl b2 bg 0
CA.Los Angeles  6.08345 —0.04688 —0.24530 1.73918  8.295
ID.Latah 6.250 —2.594 —3.869 16.204 5.88
IL.Cook 7.8821 —2.0814 —-1.6363 —0.6118 4.4766
IL.Dupage 2.6367 2.2682 3.1604 4.0053  19.26
IL.Lake —0.3856 6.2583 6.5149 2.6413 12.103
IN.Hendricks 7.528 —4.897 —1.434 5.411 6.75
KS.Cloud 6.073 10.282 —2.735 —11.064 1.615
LA .Terrebonne —5.236 11.299 12.101 —1.201  2.840
MI.Iosco 11.664 —30.936  —30.589 107.332 5.53
MN.Crow Wing 15413  —25.526  —20.110 56.033  1.859
NY.Madison 11.084 —11.273  —10.449 25.192 11.99
OH.Hamilton 3.4806 2.2786 27705  —0.1910 10.162
OH.Hancock —0.3276 7.9413 74810 —4.9492  15.55
OH.Summit 2.8254 2.8222 3.8063  —0.3299  26.50
PA.Lancaster 3.8851 0.4576 3.3224 2.5149  6.300
PA.Philadelphia 5.3437 0.4254 1.5137  —1.1671  8.960
WY.Johnson 13.782  —33.405 —9.737 38.517  2.716
2004 COUth bo b1 b2 bg 0
AL.DeKalb —0.1621  —2.0505 5.1159 14.5491  3.950
AR.St. Francis 12.915 —7.537 —9.898 7.544  1.339
CA.Glenn 17987 —15.714  —13.348 9.553 4.26
CA.Los Angeles 1.0860 4.9207 4.7157 2.7118 2.3456
CA.Orange 0.3130 2.5895 3.8374 12.0119 2.2919
COJefferson 4.8440 0.2859 0.9463 45681  14.30
FL.Manatee —21.136 27.617 29.026 —1.349  4.560
ID.Kootenai —0.05911 —2.06265  3.74346 24.58580  2.315
IL.Cook 6.96174 —1.05153 —0.25609 —1.00811  9.670
IL.DuPage —0.749 6.265 6.611 2.769 14.531
MI.Manistee 11.057 —11.644 —10.979 25475  2.549
MN.Ramsey 9.0947 —2.2906 —0.5022  —0.5450  7.839
NC.Ashe —114.37 104.84 115.64 43.48  2.077
NY.Saratoga 4.3188 1.9532 1.8564 0.6176  13.01
OH.Summit 3.9967 2.6199 27922 —1.1264 48.41
PA.Somerset —10.702 16.897 17.752 —1.680  1.767
UT.Davis 8.302 —6.831 —1.894 5.082  11.81
UT.Utah 4.825  —25.418 1.403 33.891  6.700
VA .Washington 26.51  —105.04 —38.86 190.18  2.340

Note: Coefficient and dispersion estimates for negative binomial regressions of the total number
of ballots cast on the proportions of the votes cast for the two candidates and the product of the
proportions.



Table 5: Actual and Calibrated 2BL Statistics

actual mean 95% limit
2000 County Gore Bush Gore Bush Gore Bush
CA.Los Angeles  54.8 20.3 653 21.5 919 358
ID.Latah 36.7 3.8 9.1 9.0 17.0 164
IL.Cook 46.7 244 276 17.0 44.4  30.1
IL.Dupage 28.0 41.6 172  17.1 29.8 30.2
IL.Lake 33.7 16.1 13.9 139 257 253
IN.Hendricks 20.3  26.0 10.0 10.0 18.7 18.8
KS.Cloud 23.1  26.2 9.1 9.1 17.0 17.0
LA Terrebonne 143  26.9 9.1 9.0 170 17.0
Ml.Iosco 57 23.8 9.3 9.3 175 17.2
MN.Crow Wing 28.5 4.3 9.1 9.1 17.2  16.9
NY.Madison 145 27.6 9.6 9.7 17.8 18.2
OH.Hamilton 48.7 8.9 11.3 9.3 20.8 17.5
OH.Hancock 34.3 9.9 12.3  10.1 21.6 18.8
OH.Summit 31.6 11.6 260 194 42.1  33.0
PA Lancaster 29.1 8.3 10.3 9.3 19.6 17.6
PA .Philadelphia 295 34.7 26.0 18.1 42.1 313
WY.Johnson 75 26.8 9.0 8.9 16.8 164
actual mean 95% limit
2004 County Kerry Bush Kerry Bush Kerry Bush
AL.DeKalb 13.1  27.2 9.6 9.1 18.1 17.2
AR.St. Francis 30.3 33 8.9 9.0 16.7 16.8
CA.Glenn 2.8 279 9.0 9.2 16.6 17.1
CA.Los Angeles 70.2 124 17.5 9.6 309 17.9
CA.Orange 26.2 32.6 106 134 200 242
CO.Jefferson 330 104 129 129 234 236
FL.Manatee 12.0 28.5 10.0 9.7 18.8 18.5
ID.Kootenai 309 12.1 9.1 9.0 17.0 16.6
IL.Cook 445 27.8 59.0 61.8 84.5 89.3
IL.DuPage 35.2 9.1 17.8  17.7 31.0 312
MI.Manistee 23 294 9.0 9.1 16.8 16.6
MN.Ramsey 31.0 1.7 14.9 9.0 272 16.7
NC.Ashe 30.0 139 9.1 9.1 17.3  16.7
NY.Saratoga 18.7 28.3 11.3 11.3 21.1  21.3
OH.Summit 427 21.0 13.2  10.0 24.1 18.7
PA.Somerset 95 273 9.0 9.1 16.8 17.2
UT.Davis 42.6 6.0 16.3 11.3 28.6 21.5
UT.Utah 92 27.6 10.2  10.6 19.2 19.9
VA.Washington 55 274 90 9.1 16.7 16.6

Note: The “actual” column reports X2, for the vote counts observed in the referent county, the
“mean” column reports the mean of X35, for the vote counts simulated using the calibrated
mechanism, and the “95% limit” column reports the 95th percentile of distribution of the
simulated statistics. 5,000 replications are used to compute the mean and 95% limit estimates.
Bolded values are greater than the corresponding 95th percentile value.



Table 6: Calibrated 2BL Statistic Means with Artificial Five Percent Vote Changes

+ Gore + Bush — Gore — Bush
2000 County Gore Bush Gore Bush Gore Bush Gore Bush
CA.Los Angeles 739 28.8 654 268.1 135.8 13.7 63.1 194.2
ID.Latah 9.5 9.3 8.7 10.1 8.2 10.5 9.6 8.9
IL.Cook 68.7 12.8 264 112.5 764 239 28.8 12.1
IL.Dupage 91.0 17.5 15.8 40.6 550 17.9 164 61.8
IL.Lake 339 136 14.0 31.5 331 133 13.7 28.5
IN.Hendricks 145 10.8 14.3 9.5 19.5 9.2 102 11.2
KS.Cloud 9.7 9.3 8.6 9.1 9.2 9.4 9.0 9.4
LA.Terrebonne 10.2 9.8 95 10.0 109 10.0 8.6 9.9
Ml.Iosco 9.7 8.9 9.5 9.7 9.7 9.7 9.2 8.5
MN.Crow Wing 94 94 8.5 10.1 9.2 9.7 8.5 8.8
NY.Madison 11.9 9.5 9.1 12.1 114 11.0 10.3 104
OH.Hamilton 46.3 8.8 109 263 45.3 9.2 10.5  26.1
OH.Hancock 19.5 9.9 124 124 30.0 10.5 10.5 128
OH.Summit 979 21.7 256 499 1489 15.3 20.5 839
PA Lancaster 14.8 9.7 10.1 94 16.7 9.4 99 120
PA .Philadelphia 425 14.5 28.0 10.8 695 144 26.8 18.2
WY.Johnson 9.9 9.0 9.7 8.8 9.2 9.0 8.6 9.0
+ Kerry + Bush — Kerry — Bush
2004 County Kerry Bush Kerry Bush Kerry Bush Kerry Bush
AL.DeKalb 9.6 9.5 9.7 9.9 9.2 9.0 9.6 9.2
AR.St. Francis 94 9.6 9.0 9.5 9.1 9.6 10.3 9.3
CA.Glenn 10.2 94 9.1 10.1 10.6 9.5 8.9 9.3
CA.Los Angeles  48.6 9.0 202 47.5 361 104 16.1 46.3
CA.Orange 238 145 10,0 124 259 129 10.8 21.9
CO.Jefferson 27.0 13.1 11.8 13.8 142 11.2 150 232
FL.Manatee 10.5 9.9 10.2  11.7 10.1 9.1 10,0 12.7
ID.Kootenai 9.3 9.1 9.2 9.1 10.0 9.0 8.7 9.2
IL.Cook 74.1 29.2 56.7 128.8 206.3 90.0 61.3 92.6
IL.DuPage 55.7 222 128 739 506 234 16.7 70.9
MI.Manistee 9.0 8.7 9.1 9.6 9.2 8.6 9.2 9.1
MN.Ramsey 16.0 9.2 154 9.2 13.3 8.9 15.2 9.7
NC.Ashe 9.1 9.3 8.5 8.9 8.8 9.0 9.2 9.0
NY.Saratoga 17.3  14.1 104 225 16.8 11.9 10.5 26.2
OH.Summit 22.1 9.6 123 133 13.4 9.9 155 126
PA.Somerset 9.6 9.3 8.5 9.8 94 9.7 9.2 9.1
UT.Davis 296 114 13.1 17.3 143 11.1 15.1 15.9
UT.Utah 28.2 11.0 107  11.7 11.1 9.7 16.6 10.1
VA.Washington 9.1 8.8 9.0 9.9 8.9 9.5 9.0 8.7

Note: In each column labeled “+ 2" for x € {Gore, Bush, Kerry}, if z,; > p,m then z,; and z,;
are replaced with z}; = z,; + c and z;; = max(z,; — ¢, 0), where ¢ = .05m. In each column
labeled “— 27, z,; and z,; are replaced with 2, = max(z,; — ¢, 0) and Zyi = 2yi + Cif 25 > Pum.
100 replications are used to compute the mean estimates. Bolded values are greater than the
corresponding 95th percentile value in Table 5.



