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Abstract

We study the problem of incentivizing high quality contribu-
tions in user generated content platforms from a set of se-
quentially arriving users with unknown qualities. We are in-
terested in designing a content displaying strategy which de-
cides which contents should be chosen to show to users, with
the goal of maximizing user experience (i.e., the likelihood of
users liking the contents). This goal naturally leads to a joint
problem of incentivizing high quality contributions and learn-
ing the unknown content qualities. To address the incentive
issue, we consider a model in which users are strategic in de-
ciding whether to contribute and are motivated by exposure,
i.e., they aim to maximize the number of times their contri-
butions are viewed. For the learning perspective, we model
the quality of a content as the probability of obtaining posi-
tive feedback (e.g., like or upvote) from a random user. Natu-
rally, the platform needs to resolve the classical trade-off be-
tween exploration (collecting feedbacks for all contents) and
exploitation (displaying the best content).
We formulate this problem as a multi-arm bandit problem,
where the number of arms (contributions) is increasing over
time and depends on the strategic choices of arriving users.
We first show that applying standard bandit algorithms incen-
tivizes a flood of low cost contributions, which in turn leads to
linear regret. We then propose Rand UCB which adds an ad-
ditional layer of randomization on top of the UCB algorithm
to address the issue of flooding contributions. We show that
Rand UCB helps eliminate the incentives for low quality con-
tributions, provides incentives for high quality contributions
(due to bounded number of explorations for the low quality
ones), and achieves sub-linear regrets.

Introduction
User generated content (UGC) sites are ubiquitous on the
Web – from online Q&A forums (such as Quora and stack-
overflow), to reviewing sites (such as yelp and tripadvisor),
to content-sharing sites (such as YouTube), and beyond. The
success of UGC platforms relies heavily on user satisfaction.
Ideally, a platform hosting user generated contents would
want to optimize user experience by displaying the best pos-
sible content. This objective naturally leads to a joint incen-
tive and learning problem. In particular, how does the plat-
form incentivize users to contribute high quality contents,
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and how does the platform learn the qualities of the con-
tributed contents and identify the best one?

Let us first consider a simplified version of our prob-
lem and assume the platform has access to the true qual-
ities of the contributed contents. In particular, we employ
the model in which users are strategic and aim to maximize
the exposure of their contributed content (i.e., the number
of times their content are viewed in the future). 1 This sim-
plified problem can then be reduced to a standard mecha-
nism design problem: how to allocate the “rewards” (num-
ber of times we show the contents to future users) to incen-
tivize high quality contributions? This problem turns out to
relatively well-studied in the literature (Ghosh and McAfee
2011; Ghosh and Hummel 2011; Ghosh and McAfee 2012;
Ghosh and Hummel 2012).

However, in practice, the content qualities are often not
known in advance. Instead, the platform needs to rely on
user feedbacks to estimate the content qualities, which are
defined as probabilities of obtaining a positive feedback
(e.g., like or upvote) from a random user. This leads to a
natural exploration-exploitation trade-off as in the bandit lit-
erature; the platform wants to learn the qualities of the con-
tents (or arms in bandit settings) through exploration while
optimizing user satisfaction through exploitation. However,
our setting is more complicated than standard bandit settings
in two aspects. First, the number of arms is not fixed and
is increasing over time. Second, the quality distribution of
arms is associated with the design of online learning algo-
rithms, since users’ decisions on whether to contribute is re-
lated to the design of the learning algorithm (i.e., the number
of times they think their contents will be displayed).

In this paper, we explore this joint incentive and learning
problem in user generated content platforms. In our setting,
users arrive at the platform one at a time, providing feed-
backs (i.e., votes) to the contents displayed to them, and de-
ciding whether to contribute new contents. We assume users
are unbiased in providing feedbacks and are strategic in de-
ciding whether to contribute (aiming to maximize the expo-

1This user incentive model is adopted in the literature (Ghosh
and McAfee 2011; Ghosh and Hummel 2011). It captures the natu-
ral scenario that many online users contribute contents to get atten-
tion. In addition, the number of content views could be translated
into monetary rewards through, for example, embedding advertise-
ments in the contents.



sure of their content). The content qualities are unknown to
the platform but can be learned through user feedbacks. The
goal of the platform is to maximize the overall user satisfac-
tion (i.e., the likelihood of showing users the contents they
like) by choosing a content-displaying strategy that simulta-
neously learns the qualities of existing contents and incen-
tivizes high quality new contributions.

We first show that directly applying standard bandit algo-
rithms (e.g., UCB1 (Auer, Cesa-Bianchi, and Fischer 2002))
generates bad incentives. The intuition is that, in standard
bandit algorithms, we need to explore each arm enough
number of times to estimate its quality with high confidence.
This unavoidable exploration phase provides incentives for
users to contribute, regardless of the qualities of their con-
tents. This will result in a flood of contributed contents, in-
crease the number of arms, and further reduce incentives
for contributing high quality content and degrade the perfor-
mance of online learning. We call this phenomena the curse
of exploration.

To address this issue, we proposed Rand UCB, which
randomly “drops” contributed arms with a dropping prob-
ability increasing over time. We show such a randomized
UCB algorithm will de-incentivize low quality contribu-
tions; and further this property will provide incentives for
users with high quality contents to contribute, as the algo-
rithm needs only explore a smaller number of arms. As one
may imagine, this dropping mechanism may “overkill” good
contributions as well. However, we show that we can bound
the effect of this overkilling as long as the system runs for
a long period of time, since we can guarantee to eventually
obtain the near-optimal arm with high probability.

Related Work
This paper is closely related to the body of work on incen-
tivizing high quality user contributions, in the context of
online Q&A forums (Jain, Chen, and Parkes 2009), Games
with A Purpose (Jain and Parkes 2013), crowdsourcing mar-
kets (Ghosh and McAfee 2012; Ho et al. 2015), and gen-
eral UGC websites (Ghosh and McAfee 2011; Ghosh and
Hummel 2011; Ghosh and Hummel 2012). However, most
of the works along this line assume that the qualities of user
contributions are immediately observable, while this paper
considers the learning perspective and the interaction be-
tween learning and incentives. Ghosh and Hummel (2013)
has considered a similar setting as in this paper, in which
strategic agents endogenously determines the quality of the
arms. However, they consider a one-shot scenario, in which
all agents need to determine the qualities of the contribu-
tions simultaneously at the beginning of the learning pro-
cess, without knowing other agents’ actions. We consider
sequential setting, in which agents make decisions based on
what previously arrived agents have done in the platform.

The techniques we use are largely borrowed from the ban-
dit literature (Lai and Robbins 1985; Auer, Cesa-Bianchi,
and Fischer 2002; Bubeck, Cesa-Bianchi, and others 2012).
However, in this paper, we need to address the issue of an
increasing number of arms, and that whether the arms will
be contributed are determined by strategic agents. There has
been some recent work discussing the incentive elements

in learning. Both Gonen and Pavlov (2007) and Frazier et
al. (2014) consider the setting that arms are pulled by self-
ish and myopic agents. In order to encourage exploration,
the principal needs to provide incentives. A couple of later
works are also on this line (Mansour, Slivkins, and Syrgka-
nis 2015; Mansour et al. 2016). Chakrabarti et al. (2009)
considers the setting in which the arms can be replaced over
time. In their setting, the arm replacements happen stochas-
tically and the total number of arms is fixed. In contrast, in
our setting, the number of arms is increasing and the arm
contribution/generation is a choice by strategic agents.

Setting
We explore the content displaying problem in user generated
content platforms. In our setting, users arrive at the platform
one at a time, providing feedbacks (i.e., votes) to existing
contents and deciding whether to contribute new contents.
We assume users are unbiased in providing feedbacks 2 and
are strategic in deciding whether to contribute (aiming to
maximize the exposure of their contents). The content quali-
ties are unknown in advance and can be learned through user
feedbacks. The platform designer aims to choose a content
displaying strategy to (1) learn the content qualities and (2)
incentivize high quality contributions, with the goal of max-
imizing the overall user satisfaction.

User and content models. Consider a discrete time set-
ting with t = 1, . . . , T . Let A(t) be the set of existing con-
tents at time t. Initially, A(t) = ∅ when t = 1. Each content
has an intrinsic quality q ∈ [0, 1], which represents the prob-
ability of getting a positive feedback/vote from a random
user. At each time step t, a user randomly drawn from some
unknown distribution arrives, and the platform chooses a set
of contents a(t) ⊆ A(t) to display to the arriving user.

We abuse the notation and denote the user arriving at time
t as user t. When user t arrives, she reviews the displayed
contents and provides votes to the contents. For each content
i ∈ a(t), let qi be the quality of content i, user t provides a
vote vi(t) ∈ {0, 1} to the platform, with

vi(t) ∼ Bernoulli[qi].

After voting, user t then decides whether to contribute
her content. Each user t possesses a content it of quality
qt ∈ [0, 1] randomly drawn from F (q) and incurs a cost ct
to contribute. Suppose ct has bounded support ct ∈ [c, c].
Further we assume that c > 0: this is to say that even con-
tributing the least quality content will incur a non-zero cost.
In practice, even contributing a random answer to Q&A plat-
forms requires effort (e.g., passing through several admin
and verification steps). We denote F (·) as the CDF of the
distribution of q. We assume that user t observes the true
quality of her content and the qualities of existing contents
on the platform. She is also aware of the distribution of qual-
itiesF (q) and the platform’s content-displaying strategy. Let

2We consider the common scenario that the number of visits
from a single user is small with respect to the total number of visits
from all users. Therefore, the benefit a user can gain by strategically
providing feedbacks is negligible.



ωt(t
′) be the event that the contribution of user t is displayed

at time t′ (if user t chooses to contribute her content it):

ωt(t
′) = {it ∈ a(t′)},∀t′ = t+ 1, ..., T.

The utility for user t to contribute her content writes as

Ut := E
[ T∑
t′=t+1

1(ωt(t
′))

]
− ct ,

where the expectation is over the randomness of the algo-
rithm and the distribution of user qualities. Since Ut = 0 if
user t chooses not to contribute, we know that when Ut > 0,
user t will choose to contribute. We would like to note that
the linear sum is mainly to simplify the presentation. Our
results stay valid as long as the users’ utilities are monotone
in this linear sum.

Objective of the platform. The goal of the platform is to
choose a displaying strategy A to maximize the user expe-
rience, which can be formulated as the total number of pos-
itive feedbacks collected from users. Specifically we assess
the performance of strategyA in the following three aspects:

1. We are interested in the time uniform regret in displaying
the so-far best content. A smaller such regret will lead
to better user experience over time. Denote by K∗(t) the
top-K arms with the highest quality at any time t (from
A(t)), we define the following regret:

RegretA(t) = EF

[ t∑
t′=1

∑
i∈K∗(t′)

qi

]
− EA,F

[ t∑
t′=1

∑
i∈a(t′)

qi

]

Our goal is to then show RegretA(t) = o(t) such that
over time the time-average regret RegretA(t)/t→ 0 3.

2. We measure the maximum quality of collected arms at
the end of mechanism: maxi∈A(T ) qi. A better maximum
quantity implies better incentives for new arm generation.

3. We also analyze the number of contributed low quality
arms (which will be formally defined later). Controlling
the number of low quality arms will help the system run
more efficiently.

In the following discussion, we explore the design of dis-
playing strategies. We focus on the natural design space that
A can display at most K contents at every time step, i.e.,
|a(t)| ≤ K. Note that this displaying strategy also approx-
imates users’ position biases: users are a lot more likely to
view the contents in the top page than the contents in subse-
quent pages.

3As an alternative and perhaps a stronger notion, we can de-
fine the regret with respect to the best arms among all arms that
could have been contributed, instead of the ones that have been
contributed. But note that, since we will show later that under our
mechanism, the quality of the best contributed arm approaches 1
when T goes large, our regret notion is sensible in characterizing
the algorithm performance.

A Warm-Up Setting: Known Quality
As a warm-up, we start with a simple setting in which
the platform can observe the qualities of the contents con-
tributed by arriving users. We demonstrate that the greedy
algorithm (Top-K) incentivizes high quality contributions,
while the random display algorithm incentivizes low cost
contents regardless of qualities.

To simplify the analysis, we consider the regime when T
is large. In particular, we assume T → ∞. We also assume
there is no ties in user qualities, i.e., qt 6= qt′ for all t 6=
t′. Note that these assumptions are just used to simplify the
presentations.

Let us first consider the random display algorithm, i.e., the
platform randomly choosesK contents fromA(t) to display
at time t. It is easy to show that this algorithm incentivizes
low-cost contents, regardless of the contents’ true qualities. 4

Lemma 1. If the platforms runs the random display algo-
rithm, it is a dominant strategy (which leads to highest ex-
pected utility, regardless of other users’ actions) for user t
to contribute if and only if |A(t)| < k(ct), where k(·) is a
monotonically decreasing function.

Next we consider a simple greedy algorithm, i.e., Top-
K algorithm, which ranks the qualities of contents in A(t)
and chooses the top K to display at time t. We can show
that the Top-K algorithm incentivizes high quality contribu-
tions, i.e., user t will only contribute if her content will be
ranked top K in the next time step and if her content quality
is higher than some threshold.

Lemma 2. Assume the platform runs the Top-K algorithm.
Let j be the rank of qt in A(t + 1) if user t contributes. In
the symmetric equilibrium (as in standard Bayesian Nash
Equilibrium), user t will contribute iff j ≤ K and Fj(qt) ≥
ct for some function Fj monotonically increasing in qt.

While these results are intuitive and may not seem surpris-
ing, they provide intuitions on the analysis of exploration-
exploration-type algorithms in the following discussion. For
example, when the platform explores to obtain feedbacks, it
is essentially running random display algorithm. We would
want to carefully limit the amount of explorations as it will
lead to a flood of contents regardless of qualities.

A Bandit Approach
In practice, full information would be too ideal to assume.
The platform often needs to collect information to learn the
quality of each content. This creates a joint incentive and
learning problem. Below we first show that this additional
learning phase creates bad incentives and motivates a flood
of contributions, which in turn make the learning infeasible.
We then propose a simple, yet novel algorithm Rand UCB
to address the problem.

The curse of exploration
Since the qualities of the contributed contents are not known,
the platform needs to show each contributed content to ar-
riving users some number of times to learn its quality. At

4The omitted proofs are included in the supplementary material.



the same time, the platform also wants to only show the
best contents to users to maximize their satisfaction. This
creates a tension between exploration and exploitation as
in the classical multi-armed bandit learning. To resolve this
exploration-exploitation trade-off, running standard bandit
algorithms (for example, the well-celebrated UCB1 algo-
rithm (Auer, Cesa-Bianchi, and Fischer 2002)) seems to be
a very natural solution. However, we show that directly ap-
plying standard bandit algorithms introduces bad incentives
and cannot achieve sub-linear regrets.

Informally, consider a user arriving at time t, where t <
cT for any c < 1.If she decides to contribute, a bandit-based
display algorithm needs to display her content a high num-
ber of times (in the order of Ω(log T )) to achieve sub-linear
regrets (Lai and Robbins 1985). This huge amount of un-
avoidable explorations creates bad incentives. In particular,
the benefits of explorations (in the order of Ω(log T )) user t
can obtain will outweigh the cost of contribution ct when T
goes large, regardless of content qualities. Therefore, apply-
ing standard bandit algorithms will create a flood of contri-
butions and therefore cannot achieve sub-linear regrets. We
call this phenomenon the curse of exploration and formally
summarize this negative result below.

Lemma 3. Let NT (A) be the total number of contributed
arms when the platform runs the content-display algorithm
A for T rounds. Also, let AB be the content-display algo-
rithm that chooses which content to display based on a ban-
dit algorithm B. When T is large enough, there does not
exist a stochastic bandit algorithm B such that NT (AB) =
o(T/ log T ).

Proof. We prove by contradiction. Suppose there exists such
a bandit algorithm. First follow standard argument of bandit,
we know the number of times a sub-optimal arm will be se-
lected is at most in the order of O(log T ). Since the total
number of arms is in the order of o(T/ log T ) by the contra-
dicting assumption, the total number of sub-optimal arm se-
lection is bounded by o(T ). Then for any user arriving early,
say before cT , for any c < 1, he would reason that his arm
will be competing only with the optimal ones for the rest of
k = (1− c)T − o(T ) steps. Apply the standard lower bound
argument to the k steps, the arm will be explored at least
Ω(log k) = Ω(log T ) times, which is larger than the cost of
contribution when T is large enough. Therefore, when T is
large enough, every user arriving before cT for any c < 1
will choose to contribute, and the total number of arms will
not be bounded as o(T/ log T ). This leads to the contradic-
tion and finishes the proof.

The above simple, yet striking result points out the caveat
of directly running bandit algorithms to learn content qual-
ities in user-generated content platforms. Specifically, the
number of arms that will be incentivized will approach the
order of Ω(T/ log T ), which makes it impossible to achieve
sub-linear regrets. Note that when the number of explo-
rations is large, the display algorithm based on bandit al-
gorithms will look similar to a randomized display strategy.
Thus this negative result is also hinted by Lemma 1.

Goal: We would like to propose an online algorithm that
not only minimizes the regret in selecting the best arm, but
also is able to incentivize high quality arms. More formally,
recall that qt is the quality of content by user t and A(t) is
the set of existing arms at time t. Let kt be the rank of qt
in A(t) if user t decided to contribute. If kt ≤ K, we call
such an arm arriving at time t a high quality arm (since the
arm will be among the top K arms in the next round), and
we would like to incentivize its contribution. If kt > K,
we name such an arm as a low quality arm (the arm is not
among the topK arms in the next round), and we would like
to de-incentivize its contribution.

Proposed algorithm: Rand UCB
Intuitively, the curse of explorations occurs because a ban-
dit algorithm needs to explore most arms (in particular, any
arm arriving at time t < cT for any c < 1) a large number
of times. This creates a bad incentive. It is therefore natu-
ral to ask, can we reduce the explorations for some of the
arms without sacrificing the performance of the learning al-
gorithm too much?

To achieve this goal, we propose Rand UCB, which adds
an additional layer of randomization on top of the UCB1
algorithm. This additional layer of randomization serves as
a device for us to tune the amount of explorations at each
time step. We show that, with the right choice of tuning, we
can incentivize better arms and achieve sub-linear regrets. 5

Rand UCB runs in two phases. In the first phase, the al-
gorithm selects a subset of contents a(t) from existing ones
according to the UCB1 algorithm (Auer, Cesa-Bianchi, and
Fischer 2002). The process is described as follows.

• Let ni(t) be the number of times arm i ∈ A(t) has been
selected till time t. Let vi(n) be the n-th feedback (vote)
user i has received, where n = 1, · · · , ni(t).

• Select the top K arms from A(t) to add to a(t) according
to the following index rule, with random tie-breaking

Ii(t) =

∑ni(t)
n=1 vi(n)

ni(t)
+ d

√
g(t)

ni(t)
. (1)

Both d and g(t) are configurable parameters. In standard
UCB1, d is set to be 1, and g(t) := 2 log t.

The second phase is where our algorithm differs from
standard bandit algorithms. In the second phase, we add
an additional layer of randomization to handle newly con-
tributed arms. In particular, whenever a new arm is con-
tributed at time t, our algorithm flips a coin to decide
whether to include the new arm. The newly contributed arm
will only be added to the set of arms A(t) with probability
pt and will be dropped 6 with probability 1− pt.

5We do not claim that this additional layer of randomization is
the only possible device to tune the amount of explorations. As dis-
cussed later in the paper, we can combine existing machine learning
tools as a device to help reduce the explorations and obtain good
learning guarantee.

6We say a content is dropped if it’s not added to the active ex-
ploring set of arms.



Algorithm 1: Rand UCB

Input: {pt : t = 1, . . . , T}
for t = 1, · · · , T do

select arms to display according to UCB1.
if a new arm is contributed then

add the new arm in A(t+ 1) with probability pt
end if

end for

How should we choose pt? As discussed previously, ap-
plying UCB1 will lead to linear regrets due to the large
number of unavoidable explorations when T is large. In
Rand UCB, we propose to decrease pt over time, i.e., grad-
ually decrease the chance of adding a newly contributed arm
to “exploration”. The intuition is that we want to obtain good
arms early with high probability (start with larger pt) while
not providing too much incentive for all arms (decreasing
pt). In particular, we show that when pt = min{1, C/t} for
some constant C, Rand UCB has good incentive properties
and achieves sub-linear regrets.

Incentive properties of Rand UCB
We first analyze the incentive properties of Rand UCB. De-
fine S[t:T ] :=

∑T
t′=t+1 pt′ . Intuitively, S[t:T ] upper bounds

the number of arms added to the platform after time t.
Denote the action of user arriving at time t as actt ∈
{contribute,don’t contribute} and Ht as the set of histor-
ical statistics. We define dominant strategy as our solution
concept for each incoming user t:
Definition 4. For each user arriving at time t, action a is
called a dominant strategy if for all a′ 6= a,

E[Ut|a,Ht, {qi, i ∈ A(t)}] > E[Ut|a′,Ht, {qi, i ∈ A(t)}].

Below we show that Rand UCB can incentivize high
quality arms while discouraging low quality arms. Recall
that kt is the rank of the arm t (i.e., the arm possessed by
user t) within the existing arms if it is contributed.
Theorem 5. Assume the platform runs Rand UCB with
pt = min{1, C/t} for some configurable constant C. Let
c = 1 and g(t) = log t in the UCB1 algorithm. When T
is large enough, for any user who arrives at time t < cT
with any c < 1, we can characterize whether user t will
contribute based on the following conditions:

• If user t has a high quality arm (i.e., kt ≤ K), it is a
dominant strategy for her to contribute if

S[t:T ] · (1− F (qt)) < K − kt + 1.

• If user t has a low quality arm (i.e., kt > K), whether she
will contribute depends on her arrival time. In particular,
there exists a f(T ) = Θ(log T ) such that
– if t ≤ f(T ), it is a dominant strategy to contribute.
– if t > f(T ), it is a dominant strategy to not contribute.

Proof. (Sketch) - We first prove that for a high quality arm
s.t. kt ≤ K, when S[t:T ] · (1−F (qt)) < K−kt+1, there is

a positive probability κ > 0 that arm t will stay in the top-K
set until T . Next we bound (i) selection of t, if contributed.
(ii) number of total contributed arms.

The number of contributed arms can be bounded as
follows with high probability NContr.(t) := |A(t)| +
O(S[t:T ]) = O(log T + S[1:T ]). Then we can bound nt(T )
as follows, using standard three-way UCB1 proof (Auer,

Cesa-Bianchi, and Fischer 2002): E
[∑T

t′=t+1 1(ωt(t
′))

]
≥

T − t − NContr.(t) · 8 log(T−t)
(qt−qK)2 − const., where qK de-

notes the K-th largest quality in the current A(t). When set
pt = C/t and t = o(T ), the above bound is in the order
of O(T − t − log2 T ). Then agent’s utility becomes in the
order of (T − t) · κ · pt − O(log2 T · pt) − ct. Suppose
t = O(T θ), 0 < θ < 1. Then the above quantity is lower
bounded by O(T−T

θ−log2 T
T θ

) − ct > 0, when T is large
enough.

For a low quality arm, when t = Ω(log T ), his utility if
contribute can be upper bounded by Ut ≤ O(log T ) · pt −
ct → 0 − ct < 0. Therefore there is no incentive to con-
tribute. On the other hand when t = o(log T ), we will know
that Ut ≥ Ω(log T ) · pt − ct > 0, when T is large enough.
So users will contribute.

There is a tension in selecting pt: selecting a higher pt
will provide incentives for higher number of contributions,
which leads to the curse of exploration; but setting a low
pt will miss out good arms. Our choice of pt avoids over-
explorations while guaranteeing we obtain good arms with
high probability.

Note that there exists a gray region of users that we
couldn’t characterize their equilibrium strategy: agents who
have good arms but the quality of their arms do not satisfy
the condition we specified in Theorem 5. Intuitively, these
agents’ qualities are not high enough to ensure that it will
stay in the top-K set in the long run. This may look like a
concern. However, we show that as long as there are enough
high quality contributed arms, the regret can still be bounded
whether those users contribute or not.

Is Rand UCB practical?
In Rand UCB, we propose to randomly drop new contri-
butions with a probability decreasing over time. While this
seems to be an impractical strategy (we might not want
to tell users their contributions may not be viewed at all),
in practice, we can implement a soft version: each arm is
guaranteed to be explored a few times before random drop-
ping. As long as the guaranteed exploration is small, we can
achieve the incentive property and sub-linear regret as in our
paper. In practice, we can even utilize the information from
the guaranteed exploration and drop the arms that receive
bad feedbacks (instead of random dropping).

The design intuition of Rand UCB is to reduce the
amount of explorations for later arms. Randomly dropping
new arms is one of the strategies to achieve this. We discuss
another approach that combines existing machine learning
tools later in the paper.



Performance Analysis of Rand UCB
In this section, we present a set of results characterizing the
performance of Rand UCB. In particular, we show that (1)
Rand UCB achieves sub-linear regrets, (2) the best arm col-
lected by Rand UCB approaches the best possible arm when
T is large, and (3) the total number of low quality arms col-
lected by Rand UCB is bounded in the order of O(log T ).

Regret analysis. We first state the lemma towards charac-
terizing RegretA(t).
Lemma 6. At any time t, we have

RegretA(t) ≤ 16
√
C
√
t log t+O(

√
t).

Compared to standard stochastic bandit regret, we have
an additional

√
t term. This is mainly due to the fact that

the arm qualities are drawn from a continuous space – so
we cannot differentiate two ε-close arms with only O(log t)
number of samples. We are confident that when the quality
levels are discrete, we will be able to bring the regret order
back to poly-log.

Quality of the best contributed arm. We now bound the
quality of the best contributed arm. Bounding this quality
will hint on how well the algorithm can do in incentivizing
high quality arm. We prove the following lemma showing
that when T goes large, the highest quality will approach 1
(the highest quality).
Lemma 7. When T goes large, we have maxi∈A(T ) qi → 1
w.h.p ≥ 1−Θ(1/T ).

Proof. (Sketch) - Denote by c∗k(t) the threshold for con-
tributing a new arm at time t, when the new arm’s quality
rank is k ≤ K, for a sub-linear time t = o(T ). That is
c∗k(t) is the smallest q that satisfies that S[t:T ] · (1−F (q)) <
K − k + 1. When k = 1 we have that

c∗1(t) =

{
F−1(1− K

S[t:T ]
), if 1− K

S[t:T ]
> 0

0, o.w.

We will show that at time t, if maxi∈A(t) qi < c∗1(t), there
will be with high probability that an arm that has quality
higher than c∗1(t) will be contributed in the future. Also we
can find a t = o(T ) such that K

S[t:T ]
� K – this is due to the

selection of pt, i.e., setting pt = C/t, we have 0 < S[t:T ] ≤
O(log T · ·T−θ), for some 0 < θ < 1. Therefore there will
be such a time c∗1(t)→ 1.

Number of contributed low quality arms. We bound the
number of low quality arms contributed in Rand UCB.
Lemma 8. The number of contributed low quality arms is
bounded at the order of O(log T ).

This can be established straightforwardly from Theorem
5 that after Θ(log T ) number of rounds, low quality arms
will have no incentive to contribute, due to the diminishing
probability of the contribution being added to the pool of
arms. Though trivially true, this result is of great practical

value: de-incentivizing low quality contributions not only
will reduce system’s load for running and maintaining the al-
gorithm, but also provides fundamental incentives for good
arm contribution.

Simulation
In this section, we provide simulation results to demon-
strate the intuitions of the design of Rand UCB. Rand UCB
has two advantages over the standard UCB algorithm. First,
it collects a good amount of contents in the early stages
(pt = min{1, C/t}) and gradually decreases the probability
of adding newly contributed contents into exploration phase.
This allows the platform to obtain a good enough content
early with high probability, while not sacrificing on keep-
ing exploring new contents. Second, as shown in Theorem 5,
Rand UCB incentivizes high quality contributions. This nat-
urally improves the algorithm performance, since the arms
are better. Below we use simulations to demonstrate the ef-
fects of these two components.

Decaying pt over time improves performance. We first
examine the effects of different pt choices. We assume users
always contribute and compare the results of decaying pt =
1/t and constant pt = {1, 0.1, 0.01, 0.001}. We set K =
1, T = 10, 000, and C = 10. We also assume the quality
distribution F is an uniform distribution in [0, 1]. We run
each algorithm 100 times and plot the mean performance in
Figure 1. The result shows that setting pt = 1/t outperforms
every other choices. Note that in the figure, the y-axis is the
average utility till time t.
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Figure 1: Gradually decaying pt performs well comparing
to fixed pt.

Good incentives help. We next examine the effects of
good incentives. We assume each arriving user decide
whether to contribute based on the characterization in The-
orem 5. We compare the results of running Rand UCB and
UCB on strategic users. For comparison, we also plot the
results of running Rand UCB on always-contributing users.



As we can see from the results, as shown in Figure 2, provid-
ing good incentives significantly improves the performance.
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Figure 2: Providing good incentives improves the perfor-
mance.

Discussions
We hope our work will open the discussion of designing in-
centivize compatible sequential learning methods to collect
high quality contributions for online platforms. We outline a
few interesting and promising extensions.

An alternative to random dropping
In Rand UCB, we randomly drop newly contributed arms
and use this as a device to control the amount of explo-
rations. In this section we discuss an alternative approach
to get around of the random dropping, via leveraging addi-
tional information and machine learning (ML) techniques.

Our main idea is inspired by the following observation.
User contributions often arrive with features that signal con-
tent qualities, e.g., content length, contributor’s reputation,
etc. Can we leverage machine learning techniques to predict
the quality of newly contributed content from its feature vec-
tors, without displaying it extensively? In other words, can
we use machine learning tools as a device to help reduce the
amount of explorations in our problem?

Note that, if there exist a ML algorithm that can perfectly
predict content qualities, our setting reduces to the full in-
formation setting we present earlier on. The best strategy is
to only display top-K contribution. However, if the accuracy
of the ML algorithm is not perfect and is upper bounded by
a constant (not a function of time horizon T ), we still suffer
from the “curse of exploration”. The intuition is, for each
arriving arm, the ML algorithm essentially provides some
number of “free explorations” (based on the ML prediction).
However, to safely drop a low-quality arm, the number of ex-
plorations we need is Ω(log T ). Therefore, for large enough
T , we still suffer from the curse of exploration.

In this section, we discuss an interesting case when there
exists a ML algorithm whose error decreases in T and ap-
proaches 0 when T goes to infinity. For example, if each arm

comes in with a feature vector, via collecting users’ votes,
we can train the ML to predict arm qualities. If the error
rate gets to 0 as T gets large, we might use this to replace
the random dropping mechanic. However, there are many
other challenges, e.g., the training data comes from users’
strategic choices and is not i.i.d. drawn, to design such an
algorithm. We discuss a simple linear model to demonstrate
this idea (for details please refer to supplementary material):
Suppose the contributed content at time t comes with a fea-
ture vector xt ∈ Rd. Consider the following linear model
qt = θ>xt, where θ ∈ Rd is the unknown parameter. There-
fore we know as soon as we can learn the θ correctly, we will
be able to safely predict the quality of a newly arrived con-
tent. To estimate θ, we can collect a set of xt along with its
estimated qualities q̃t (through displays) at certain randomly
selected time points, and perform linear regression.

Future directions
Effort sensitive model Effort sensitive models have been
thoroughly studied in (Ghosh and McAfee 2011; Ghosh
and McAfee 2012; Witkowski et al. 2013; Ho et al. 2015)
for modeling the quality of user-generated contents. These
works consider the case that the content quality qt is endoge-
nously decided by an effort variable et. Agents’ strategic
decisions will not only be on deciding whether to contribute
but also on deciding which effort level to choose before con-
tribution. While we think our proposed solution framework
can be extended to this effort sensitive case, the analysis
will be much more complicated; as now when agents rea-
son about their utilities, they also need to reason about the
effort exertion actions from all future agents. This challenge
is also noted by Liu and Chen (2016).

A Dueling bandit approach There is also an interesting
interleave between the incentive design and interface design
problems. In our current set of results, when the mechanism
designer displays a content, each content will receive a feed-
back based on its true quality. We can imagine another way
(i.e., a different interface) of collecting quality information
would be to ask each user to select her preferred content
within two contents (or within a set of contents). From the
learning perspective, this falls into the scope of the newly
arising study of dueling bandit (Yue et al. 2012). From the
incentive perspective, how should we choose the set of con-
tents to display to users at each time step, while ensuring
users with high quality arms are incentivized to contribute?
It would be interesting to study how different incentives can
be provided in different interfaces.

Conclusion
We propose a bandit algorithm Rand UCB for solving the
problem of incentivizing high quality contributions from se-
quentially arriving users with unknown qualities. The algo-
rithm builds on the classical UCB1 algorithm, with an addi-
tional layer of “random dropping” to tune the amount of ex-
plorations over time. We show that Rand UCB helps elimi-
nate the incentives for low quality contributions, provides in-
centives for high quality contributions (due to bounded num-



ber of explorations for the low quality ones), and achieves
sub-linear regrets. We also offer discussions on possible ex-
tensions, including replacing random dropping with existing
machine learning tools for reducing the amount of explo-
rations. We hope this work will open the discussion of de-
signing incentive compatible sequential learning methods to
collect high quality contributions for online platforms.
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