
Detecting Hidden Propagation Structure and Its

Application to Analyzing Phishing

Yang Liu, Mingyan Liu

Electrical Engineering and Computer Science

University of Michigan, Ann Arbor

{youngliu, mingyan}@umich.edu

Abstract—In this paper we study the problem of how to
detect and extract a particular type of propagation structure
that arises in phishing activities. One of the most interesting
phenomena induced by phishing is fast-flux, whereby a single
malicious domain is mapped to a constantly changing IP
address in order to evade capture and shut-down. This leads to
malicious activities observed to be propagating through different
networks, even though they originate from the same phishing
campaign. To be able to detect and extract such a propagation
is of significant importance as it can help us understand and
analyze phishing activities. To achieve this goal, we propose
a multi-layered propagation model, where layers correspond to
different delay stages in the propagation and each is given by an
adjacency matrix called the propagation matrix which models
pairwise propagation relationships. A regression problem is
then formulated to estimate this set of matrices so that the
model prediction best fits the data; a Gibbs sampling based
randomized algorithm is developed to efficiently find solutions
with guaranteed performance. We evaluate our method using
both simulation and Internet measurement data.

Index Terms—Multi-layer propagation model, propagation
detection, regression, phishing, measurement, network-level ma-
licious activities

I. INTRODUCTION

In many natural and engineered systems, risks and their

manifestations propagate throughout the system. The mech-

anisms underlying such propagation differ from case to

case, but it is often enabled by the inter-connectedness and

interdependencies among the components of the system.

Prime examples include for instance the spread of contagious

diseases among a population [16], [20] and cascading failures

in a power grid [17].

Understanding how risks propagate in these various set-

tings is often of vital importance: it tells us how to design

more resilient systems, e.g., by taking away (or strengthen-

ing) the most critical node [13]. Another example is [23]

which showed that the extinction probability and propagation

rate of epidemics over a network is closely related to the

eigenvalue of the underlying topological structure. At the

same time, when the underlying mechanism driving the

propagation is unknown, e.g., how a particular disease is

This material is based on research sponsored by the Department of
Homeland Security (DHS) Science and Technology Directorate, Homeland
Security Advanced Research Projects Agency (HSARPA), Cyber Security
Division (DHS S&T/HSARPA/CSD), BAA 11-02 via contract number
HSHQDC-13-C-B0015.

passed from one person to another, or how the failure of one

switch on the grid triggers another, empirical observations

on the temporal evolution of the outbreak (resp. failures) can

often shed light on the unknown mechanism.

In this paper we study the problem of how to detect and

extract a particular type of propagation that arises in phishing

activities. One of the most interesting phenomena induced by

phishing is fast-flux [18], whereby a single malicious domain

is mapped to a constantly changing IP address in order to e-

vade capture and shut-down. This leads to malicious activities

observed to be propagating through different networks, even

though they originate from the same phishing campaign. To

be able to detect and extract such a propagation amounts to

identifying the set of networks involved in the same phishing

campaign, and is thus of significant importance as it can help

us understand and analyze phishing activities.

Conceptually detecting propagation groups bears some

resemblance to community detection [15], whose target is

to find a subset within a network that shares some type of

similarity. However, technically our task is very different

from most of the existing community detection literature.

This is because existing literature largely focuses on detecting

communities in a static setting, e.g., a cluster within a

network with static topology. On the other hand, propagation

only arises in a dynamic setting, e.g., with data given as a set

of temporal signals rather than a static graph. Thus we must

be able to capture similarity over time and in a way that’s

consistent with the type of propagation. This is a much more

challenging task.

Dynamic connectivity structure has been studied in a

related domain, namely social networks, where different

methods have been proposed to track information diffusion

paths. For example, in [22] Rodriguez et al. proposed a

method to uncover information diffusion patterns based on

temporal dynamics. Later [26] generalized this methodology

by considering heterogeneous link functions. However, all of

the above depends heavily on the notion of events, requiring

as input a set of event occurrences and timelines that can

help pin down a set of propagation paths corresponding

to the events. This makes the problem very different from

ours as the security incidences usually remain unknown

and in general no source information (e.g., attack sources,

campaigns, causal effects, etc) is available.

To achieve our goal, we propose a multi-layered propaga-

tion model, where layers correspond to different delay stages

in the propagation and each is captured by an adjacency

matrix called the propagation matrix. A regression problem

is then formulated to estimate this set of matrices so that

the model prediction best fits the data. The computation of

this regression problem is shown to be non-trivial due to

its exponentially growing solution space w.r.t. the data size

(the number of units in the network), which is large in our

case (on the order of hundreds of thousands). To alleviate

the computational complexity, we propose a Gibbs sampling

based randomized algorithm to solve this problem with

guaranteed convergence and ǫ-optimality. We demonstrate

the effectiveness of the methodology by both simulation and

using a set of empirical data.

While this method is more broadly applicable, to be

concrete we will frame our discussion specifically within the

context of phishing. To do so we will start with a description

of our data, which is a set of well known host reputation

blacklists (RBLs, summarized in Table I) collected over a

period of 10 months (Jan - Oct 2013). These lists record,

on a daily basis, host IP addresses seen engaged in some

malicious activities – they are loosely broken down into three

types: spam, phishing, and scanning attack. To capture how

phishing campaigns propagate from one network to another,

we aggregate the host information given in the RBLs at the

prefix level, i.e., we record the daily fraction of IPs belonging

to a prefix that get listed, referred to as an aggregate temporal

signal. We then define a similarity measure between two

prefixes’ aggregate signals by correlating the two. Putting

together all pairwise similarity measures leads to a similarity

graph. By projecting the similarity graph onto its principle

directions, evidence of propagation immediately emerges. We

will show that our proposed propagation model and solution

methodology is very effective in identifying and extracting

these propagation groups.

Our major contributions are two-fold:

1) We propose a framework to uncover propagation pat-

terns from a large number of un-labeled temporal

signals.

2) To our best knowledge, this is the first systematic

study towards revealing the propagation of malicious

activities by utilizing Internet-scale measurement data.

The rest of the paper is organized as follows. We introduce

our dataset in Section II and present empirical results on

the similarity between networks’ malicious activities and

evidence of propagation in phishing campaigns. In Section

III we present a regression model designed to extract propa-

gation groups seen in the phishing data. The result is tested

using both simulation and our RBL data in Section IV.

Section V concludes our works.

II. THE DATASET AND PRELIMINARIES

A. The RBL dataset

Our dataset consists of 11 IP address-based reputation

blacklists over the 10-month period from January to October

2013. The sampling rate is once per day (i.e., the list

Type Blacklist Name

Spam CBL [2], SBL [10], SpamCop [8],

WPBL [12], UCEPOTECT [11]

Phishing/Malware SURBL [9], Phish Tank [6],

hpHosts [4]

Active scanning Darknet scanner list [], Dshield [3],

OpenBL [5]

TABLE I
THE RBL DATASETS

content is refreshed on a daily basis). Table I summarizes

these lists and the type of malicious activities they target:

spam, phishing/malware, and active scanning. All combined

this dataset includes 164 million unique IP addresses. Even

though our later analysis will only focus on the phishing data,

in this section we show features of all three types for contrast

and to better highlight the propagation seen in the phishing

data.

We first aggregate the individual blacklists in a union

fashion along each malicious activities, i.e., an IP is listed on

an union list for one type of activity on a given day as long

as it shows up on at least one of the individual blacklists of

that type on that day. This leads to three union lists, referred

to as the Spam, Phishing, and Scanning lists, respectively.

These union lists remain at the IP level, i.e., they contain

information on specific IP addresses, while we wish to

capture activities at a network level to be able to discern

propagation. For this reason we next aggregate the listed

IP addresses at the routed prefix level (collected by all

vantage points of Route Views [21] and RIPE [7] projects),

by counting the number of listed IP addresses within each

prefix. We thus obtain, for a given union list, a discrete-

time aggregate signal for each prefix i; these are denoted by

r
sp
i (t), r

ph
i (t), rsci (t), t = 0, 1, 2, · · · , for signals obtained

from the spam, phishing and scanning lists, respectively.

There are two types of aggregate one can define: the

normalized version and the un-normalized version. For the

normalized version, r∗i (t) is given by the fraction of the

total number of IPs on the ∗-list and belonging to prefix

i on day t over the total number of addresses within prefix

i; here we use ∗ to denote any of the union lists. In the

un-normalized version r∗i (t) is simply defined as the total

number of IPs on the ∗-list and belonging to prefix i on day

t. Note that when we examine prefixes of the same size, the

two aggregate definitions are equivalent. When we examine

prefixes of different sizes, the normalized version hides the

actual number of malicious IPs so that a large-sized prefix

does not overwhelm a small one when they have the same

percentage of IPs listed. As prefixes are of different sizes in

this study we will use the normalized version of the aggregate

signals. In all, the RBL dataset represents 363,667 unique

prefixes.

Over the 10-month period, a majority of the prefixes have

very low presence on these RBLs (over 80% of prefixes

have < 2% of their IPs listed on average), while a small

number (< 1%) has a very high number of malicious IPs.

For this as well as computational reasons, throughout our

analysis we will limit our attention to the top 5,000 most

significant (or malicious by this average measure) prefixes

given a particular union list. Note that different union lists

result in different sets of top 5,000 most malicious prefixes,

e.g., those heaviest in scanning activities may not be the same

as those in spamming, and so on.

B. Similarity measure and similarity graphs

Given two aggregate signals r∗i (t) and r∗j (t) for two pre-

fixes i, j, we next define a similarity measure and examine to

what extent these dynamic network-level malicious behaviors

are similar to each other. We then project the similarity

matrix onto a 2D graph which gives us direct evidence of

propagation effects.

Let r∗i and r
∗
j be the vector form of r∗i (t) and r∗j (t), t =

1, · · · , τ , respectively for some horizon τ . Then the temporal

similarity between these two vectors can be measured by the

following:

S∗
i,j =

2(r∗i)
T · r∗j

|r∗i |
2 + |r∗j |

2
, ∀i 6= j , (1)

where T in the superscript denotes transpose. The above is

essentially a correlation measure, so its meaning is straight-

forward: it captures how similar in shape these two vectors

are. Given N prefixes, the collection of N2 similarity values

can be represented in a similarity matrix S∗ = [S∗
i,j]. It is

easy to see that S∗ may be interpreted as a weighted adja-

cency matrix for an underlying similarity graph G = (V, E):
V is the set of N prefixes, E the set of weighted edges, with

weights S∗
i,j representing the closeness/ similarity between

two connected prefixes i, j ∈ V .

We next visualize these similarity graphs on a 2D plane, on

which each point represents a prefix, and the pair-wise Eu-

clidean distance between every two points is approximately

inversely proportional to their edge weights. Thus the closer

two points are, the more similar the corresponding prefixes

in their aggregate signals. The approximation is due to the

fact that in computing the locations of these prefixes whose

distances satisfy the set of pairwise similarity measures, the

true answer generally lies in a higher dimensional space, in

which case the 2D depiction is the projection of the true

solution to the 2D plane, or a least-squares approximation.

We plot these similarity graphs derived from the three

union lists for the month of October 2013 (i.e., from ma-

trices Ssp, Sph, and Ssc, respectively). These are shown

in Figure 1. In inspecting Figures 1(a)-1(c), we note very

different features. In particular, the phishing graph shows

distinct curves/lines. This indicates a type of “continuity”

in similarity, i.e., successive neighbors are very close to each

other but they collectively span over a much larger distance.

The most direct explanation for this phenomenon is that

the sequence of prefixes share similar aggregate signals but

with a progressive phase shift; equivalently one may view

all prefixes as capturing the same signal propagating through

them.

To verify this explanation, consider a set of signals shown

in Figure 2(a), where each is a delayed version of the

previous one. When we plot the 2D projection of the resulting

similarity matrix for this set of signals, indeed a line is

observed as shown in Figure 2(b). We further verify this

explanation by extracting a set of prefixes from the top two

curves of the phishing graph; their aggregate signals are

shown in Figure 2(c)−2(d). These show quite clearly the

propagation effect illustrated above.

The reason behind the observed propagation effect is the

fast-flux phenomenon [18] mentioned earlier, whereby a

single malicious domain is mapped to a constantly changing

IP address. This leads to a single malicious event propagating

through different prefixes over time with the result that

two successive prefixes exhibit high similarity (separated by

coordinated shifts) in their dynamic behavior.

For the rest of the paper we will solely focus on the

propagation phenomenon observed in the phishing similarity

graph shown in Figure 1(b), and will try to address the

question whether we can develop an algorithm to extract

these propagation groups from such a graph. The reason why

we are interested in this has to do with forensics: if we can

quickly extract the set of networks involved in a propagation

group, we can then find out the IP addresses within those

networks that are responsible for the phishing activity and

during what time period, and verify (by checking the URL-

s/websites associated with those IP addresses) whether they

originate from the same campaign. This allows us to further

analyze how a phishing campaign chooses the sequence of IP

addresses and how it migrates from one network to another.

III. DETECTING AND EXTRACTING PROPAGATION

GROUPS

With empirical evidence of propagation shown in the

previous section, we next detail a multi-layer propagation

model that aims at capturing the underlying propagation

mechanism. We then formulate a regression problem to-

wards finding propagation groups from empirically measured

temporal signals without knowledge of possible triggering

incidents.

A. A multi-layered propagation model

Denote by N the number of network units (prefixes in

our context) under consideration. The duration of observation

is set to be τ days, i.e., we have historical data for time

t = 1, 2, ..., τ for each unit. The observed maliciousness of

prefix i at time t, i.e., the value of its aggregate signal at

time t, is ri(t).
Consider a hidden propagation graph G connecting the

networks/prefixes; each prefix i is connected to a set of

neighbors taking into account time delay: if what happens

in network j reaches network i within k days, then we say

network j is in i’s k-neighborhood on the graph G. Denote

this neighborhood by N k
i . We will model the propagation

effect among the networks as follows:

r̂i(t+ 1) = β ·
d∑

k=1

∑

j∈Nk
i

rj(t+ 1− k)

+ (λi − µi)ri(t) , (2)

(a) Spam (b) Phishing (c) Scan

Fig. 1. 2D visualization of similarity graphs : different malicious activities. Our focus is on phishing, with the other two illustrated to provide contrast.

0 5 10 15 20 25 30 35
0

0.5

1

0 5 10 15 20 25 30 35
0

0.5

1

0 5 10 15 20 25 30 35
0

0.5

1

0 5 10 15 20 25 30 35
0

0.5

1

0 5 10 15 20 25 30 35
0

0.5

1

(a) Simulated signals. (b) Similarity graph.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
x 10

−3

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
x 10

−3

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1
x 10

−3

112.140.186.0/24

199.102.44.0/22

103.3.48.0/22

(c) Phishing : Example 1

0 5 10 15 20 25 30
0

1

2

3

4
x 10

−3

0 5 10 15 20 25 30
0

1

2

3

4
x 10

−3

0 5 10 15 20 25 30
0

1

2

3

4
x 10

−3

194.213.4.0/24

195.144.251.0/24

209.200.227.0/24

(d) Phishing : Example 2

Fig. 2. Illustration of propagation. (a) shows the simulated signals propagating through the group. The resulting similarity graph is given in (b). Further
verification is done by extracting two sets of propagation groups from the top two curves in the phishing similarity graph, shown in (c) and (d).

where r̂i(t+1) is the estimated signal value (or the regression

outcome) for network i on day t+1; we will try to match this

to the observed value ri(t + 1) as closely as possible. The

interpretation of this model is that what is seen for network

i on day t + 1 is a combination of what was seen within

its k-neighborhood within the previous k days, and its own

condition the day before. This would capture the following:

(1) an IP address in network j used for phishing migrated

to network i on day k = 1, · · · , d, and (2) an IP address in

network i used for phishing the previous day continues to be

used for phishing on the current day.

In Eqn (2), β is an attenuation parameter discounting the

propagation effect as it reaches i from its neighbors; λi

is the arrival rate of external risk (or newly selected hosts

to run phishing sites in our context); µi is the extinction

rate of a prefix (which counts for phishing hosts migrating

out of the network or cleaning up by the local host/system

administrator); and d is the propagation horizon we consider.

We discuss briefly various ways in which the above model

can be further enhanced. For instance, all the parameters can

potentially be made time-varying, and the attenuation β can

depend on the source and destination networks i and j. Some

thoughts also need to go into selecting the right value for d:

this should ideally be consistent with the typical duration of

a phishing campaign. However, very little is known about

this quantity in the literature. From a computational point

of view a small d is preferred as it decreases complexity. It

is also preferred because it reduces the chance of mistaking

coincidence for true synchronized behavior. For these reasons

in our numerical experiment we will keep this value relatively

small (d = 7). As we will see a consequence of this

is that a single phishing campaign may be identified and

extracted as multiple smaller propagation groups. This is not

a serious drawback as smaller groups can be easy assembled

afterwards.

The above propagation model can be written in matrix

form:

r̂(t+ 1) = β ·
d∑

k=1

Ak · r(t+ 1− k)

+ (Λ−Π) · r(t) , (3)

where Λ,Π are diagonal matrices with Λ = diag(λi) and

Π = diag(µi). A1, ..., Ad are referred to as propagation

matrices corresponding to different delay (up to d days),

respectively. Specifically, if Ak(i, j) = 1 we say there is

direct k-day propagation from prefix j to prefix i. The

propagation matrices are unweighted adjacency matrices, i.e.,

A(i, j) ∈ {0, 1}.

For the rest of the analysis we will focus on a simplified

model: no attenuation (β = 1) and steady state operation

(λi = µi). The recursive equation then reduces to the

following,

r̂(t+ 1) =
d∑

k=1

Ak · r(t+ 1− k) . (4)

Similar to what is commonly done in community detection,

we will try to identify the propagation matrices by finding

the best fit for the set of original signals {ri}i. That is, we

will find the set of {Ak} that minimizes certain loss function

with input being (r, r̂) :

min
{Ak}

L(r, r̂) ,

subject to certain constraints on {Ak}. For example, taking

L(·) to be the squared error norm results in the following

optimization problem:

min{Ak}

∑τ

t=1
||r(t)− r̂(t)||2

2

s.t. Ak(i, j) ∈ {0, 1}, k = 1, ..., d, i, j ∈ U .

r̂(t) =
∑d

k=1
Ak · r(t− k).

∑d
k=1

Ak(i, j) ≤ 1, ∀(i, j) ∈ U2 ,

where the last constraint stipulates that propagation between

two networks happen no more than once within the period

d.

B. Additional modeling issues

There are a few more modeling issues worth discussing.

1) Suppose there is a propagation chain i → j → l. Then

the fitting error would be the same for l whether we

have a directed edge from i → l in matrix A2 or one

from i → j and j → l in matrix A1. The optimization

problem can be modified (with additional constraints)

to induce either type of solutions. In the present study

we will choose to prefer solutions of the first type, i.e.,

direct (even if delayed) propagation.

2) Without constraining the number of edges in the prop-

agation matrix, the optimization problem tends to add

more edges than desired. This is a well-known problem

called over-fitting.

To address the above issues, we consider the following

modification to the original regression problem:

min{Ak}

∑τ

t=1
||r(t)− r̂(t)||2

2
+

∑d

k=1
γ−k · ||Ak||1

s.t. Ak(i, j) ∈ {0, 1}, k = 1, ..., d, i, j ∈ U .

r̂(t) =
∑d

k=1
Ak · r(t− k).

∑d
k=1

Ak(i, j) ≤ 1, ∀(i, j) ∈ U2.

∑d
k=1

γ−k · ||Ak||1 is a regulation term and γ ∈ (0, 1) is the

regulation parameter. It serves as a penalty to induce fewer

edges in the propagation matrices. Moreover since γ−k is

increasing in k, we punish more an edge in a high order

propagation matrix (longer delay), reflecting less confidence

in establishing a link. We refer to this problem as (PR).

Proposition III.1. If the propagation model is accurate, then

the optimal solution returned by (PR) will not mistake a

longer path (say i → j → l with delays dij and djl) for

a shorter one (i → l with delay dil = dij + djl).

Proof. We prove this by contradiction. Suppose the true

propagation path contains the segment i → j → l with delays

dij and djl (i.e., there is an edge i → j in Adij
and edge

j → l in Adjl
), but the optimal solution returns the edge

i → l in Adij
with dil = dij +djl. We first establish that the

edge i → j must also exist in the optimal solution. This is

because the existence of edge i → l means that its inclusion

carries more reduction in the fitting error than the regulation

penalty it induces. It follows that the edge i → j must also

exist since its inclusion carries the same amount of reduction

in fitting error (since the model is assumed accurate) while

resulting in less regulation penalty.

Having established that i → j exists, we now add edge

j → l to matrix Adjl
and remove the edge i → l

from Adil
. It is easy to verify the first fitting term, i.e.,

∑τ
t=1

||r(t) −
∑d

k=1
Ak · r(t − k)||2

2
, stays unchanged after

this addition. However, the regulation term undergoes the

following change:

γ−dil · ||ei · e
T
l ||1 ⇒ γ−djl · ||ej · e

T
l ||1 . (5)

Since dil > djl, γ < 1, we have

γ−dil · ||ei · e
T
l ||1 > γ−djl · ||ej · e

T
l ||1 .

This means we have found a better solution, which contra-

dicts the optimality assumption. The same argument can be

repeatedly applied to any segment of a propagation path.

C. A Gibbs sampling based fast recovery

The problem presented above is hard to solve (solution

space is a set of integer values) and solving the problem

directly is computationally prohibitive. To see this note that

we have d·N2 variables, and for a generic integer program the

solution complexity is exponential in this number. We thus

propose the following randomized solution approach which

can guarantee ǫ-optimality, ∀ǫ > 0. Consider adding an edge

from network j to i in the propagation matrix Ak, i.e.,

Ak ⇐ Ak + ei · e
T
j . (6)

We would like to find the resulting change in the objective

function value due to this addition. Denote by

J ∗(A1, A2, · · · , Ad)

=
T∑

t=1

||r(t)−
d∑

k=1

Ak · r(t− k)||2
2

+

d∑

k=1

γ−k · ||Ak||1 . (7)

Consider J ∗(A−k, Ak+ei ·e
T
j) and inspect each term in the

summation of J ∗. The change to the regulation term is easy

to obtain and given by:

γ−k · ||Ak + ei · e
T
j ||1 − γ−k · ||Ak||1 = γ−k . (8)

Consider now the fitting term, which can be decomposed into

the following:

||r(t)−
d∑

k=1

Ak · r(t− k)||2
2

= r
T (t) · r(t)
︸ ︷︷ ︸

Term 1

−2 · rT (t) ·
d∑

k=1

Ak · r(t− k)

︸ ︷︷ ︸

Term 2

+

[d∑

k=1

Ak · r(t− k)

]T

·

[d∑

k=1

Ak · r(t− k)

]

︸ ︷︷ ︸

Term 3

. (9)

First note Term 1 is independent of the choice of {A}; thus

we will only focus on Term 2 and Term 3. Replacing Ak

with Ak + ei · e
T
j we record the changes as follows:

∆(Term 2) = −2 · rT (t) · (ei · e
T
j) · r(t− k)

= −2 · ri(t) · rj(t− k) , (10)

∆(Term 3) = 2 · rT (t− k) · (ej · e
T
i) ·

d∑

k=1

Ak · r(t− k)

+

[

ei · e
T
j · r(t− k)

]T

·

[

ei · e
T
j · r(t− k)

]

. (11)

Simplifying further we have

2 · rT (t− k) · (ej · e
T
i) ·

d∑

k=1

Ak · r(t− k)

= 2 · rj(t− k) ·
d∑

k=1

Ak(i, :) · r(t− k) , (12)

and
[

ei · e
T
j ·r(t− k)

]T

·

[

ei · e
T
j · r(t− k)

]

= r2j (t− k) ,

(13)

where we have used Ak(i, :) to denote the ith column of

matrix Ak. Summing up all changes and define the potential

function for edge j → i on Ak as

∆k(i, j) =
T∑

t=1

{

−2 · ri(t) · rj(t− k) + 2 · rj(t− k)

·
d∑

k=1

Ak(i, :) · r(t− k) + r2j (t− k)

}

+ γ−k . (14)

This change in the objective function value consists of four

parts. The last part counts as regulation while the first three

come from fitting.

Based on the above results we propose the following

randomized algorithm which targets an ǫ-optimal solution.

The algorithm works in an iterative fashion and starts with

an initial set of propagation matrices A1, A2, · · ·Ad. At each

step, we first evaluate the objective function value given the

current set of propagation matrices; denote that by U . Then a

pair of nodes (i, j) is randomly selected among all node pairs.

Remove current edges j → i from all Ak’s if they exist. Then

use the resulting set {Ak}
d
k=1

to evaluate ∆k(i, j), i.e., the

difference its addition would make to the current objective

function. Then for k = 1, 2, · · · , d, add this edge to matrix

Ak with probability (using a d-sided coin)

Pj→i(Ak) =
e−

U+∆k(i,j)

σ2

∑d

m=1
e−

U+∆m(i,j)

σ2 + e−
U

σ2

=
e−

∆k(i,j)

σ2

∑d

m=1
e−

∆m(i,j)

σ2 + 1
. (15)

The probability of adding no edge is given as

Pj→i(∅) =
1

∑d

m=1
e−

∆m(i,j)

σ2 + 1
. (16)

The process continues till it converges, defined as improve-

ment to the objective value in successive rounds falling below

a threshold for a long enough period.

Theorem 1. The randomized algorithm is ǫ-optimal asymp-

totically.

Proof. The proof follows from standard techniques of Gibbs

sampling and is thus omitted for brevity.

Besides guaranteed performance, this algorithm is also

computationally light. Denote the number of steps required to

reach convergence by C. Then the computation complexity

is on the order of O(C · N2), which is polynomial instead

of exponential in N .

IV. VALIDATION

We evaluate our algorithm using both numerical simulation

and by applying it to the RBL phishing data shown earlier.

For simulation, we insert a propagation group of size k into

a network of size N . For members outside this group their

signals are sequences of IID values drawn from a uniform

distribution. For members within the propagation group their

signals are given by those shown in Figure 2(a), a 5-day

signal with a progressive time shift. The simulation is run

long enough to allow the above signal to fully propagate

through a k-node group, i.e., at least k+5 days in simulation

time.

N\k 5 10 20 50

50 100% 75% 73.68% (100%)

100 100% 77.78% 63.16% 56.2%

200 100% 66.67% 57.89% 57.14%

300 100% 66.67% 68.42% 55.1%

1,000 100% 55% 65.10% 36%

TABLE II
DETECTION ACCURACY. DETECTION IS VERY ACCURATE WHEN k IS

SMALL; IT DEGRADES AS k INCREASE. HOWEVER, IN ALL THE

DETECTION RATES REMAIN ABOVE 55%.

The detection performance is summarized in Table II (Note

that the “(100%)” entry is not particularly meaningful: in

this case the entire set of nodes belongs to the propagation

group and the algorithm is able to recover the whole group

but this is in the absence of other signals in the system). A

specific example is shown in Figure 4(a), where the blue dots

denote the propagation group and is precisely taken out by

our algorithm. The average performance summarized in Table

II suggests that up to groups of size 5, our algorithm is very

accurate. The performance degrades as the group becomes

larger, which is to be expected as longer propagation paths

make it harder to extract all members correctly in sequence.

The convergence speed of our algorithm varies depending

on the randomly generated tests. However, most of them

converge quickly within 100 rounds of simulation cycles.

Some examples are plotted in Figure 3.

0 50 100
105

110

115

120

125

130

135

Rounds

O
b
je

c
ti
v
e
 v

a
lu

e

0 50 100
185

190

195

200

Rounds
O

b
je

c
ti
v
e
 v

a
lu

e

Fig. 3. Examples of convergence

(a) Simulation. (b) Phishing.

Fig. 4. Validation results. a). A propagation group of 5 nodes was precisely
extracted (shown in blue). b). Selected propagation groups are superimposed
(in blue) on the original 2D visualization. Key parameters used: Size of the
system = 5, 000, τ = 30, d = 7, γ = 0.4.

We then apply the method to the phishing data shown

earlier. Figure 4(b) shows the extraction result where the orig-

inal graph (in red) is superimposed with blue dots indicating

groups identified and extracted by our algorithm. Here we

have set d = 7, i.e., we consider propagation effects up to a

week’s delay. As expected, since we only allow small group

sizes, our algorithm returned a large number of groups with

different maximum delays. For simplicity of presentation, we

have superimposed a subset of these groups on the same

graph while mentioning that each individual group is always

closely located and along the same linear group seen in the

original graph. Table III shows the distribution of the sizes

of the groups extracted (the maximum size is 8 given the

largest allowed delay is 7).

Group size 2 3 4 5 6 7 8

Groups 1,920 468 130 38 15 0 0

TABLE III
IDENTIFIED GROUPS

V. CONCLUSION

In this paper we presented a method aimed at identifying

and extracting groups involved in the propagation of phishing

activities. We proposed a multi-layered propagation model,

where layers correspond to different delay stages in the

propagation and formulated a regression problem to find

the best match between the model prediction and the data.

Evaluation using simulation and Internet measurement data

showed that our method can be very effective.

REFERENCES

[1] Barracuda Reputation Blocklist. http://www.barracudacentral.org/.
[2] Composite Blocking List. http://cbl.abuseat.org/.
[3] DShield. http://www.dshield.org/.
[4] hpHosts for your pretection. http://hosts-file.net/.
[5] OpenBL. http://www.openbl.org/.
[6] PhishTank. http://www.phishtank.com/.
[7] RIPE Routing Information Service (RIS) Raw data Project. http://

www.ripe.net/data-tools/stats/ris/ris-raw-data.
[8] SpamCop Blocking List. http://www.spamcop.net/.
[9] SURBL: URL REPUTATION DATA. http://www.surbl.org/.

[10] The SPAMHAUS project: SBL, XBL, PBL, ZEN Lists. http://www.
spamhaus.org/.

[11] UCEPROTECTOR Network. http://www.uceprotect.net/.
[12] WPBL: Weighted Private Block List. http://www.wpbl.info/.
[13] Pin-Yu Chen and A.O. Hero. Node removal vulnerability of the

largest component of a network. In Global Conference on Signal and

Information Processing (GlobalSIP), 2013 IEEE, pages 587–590, Dec
2013.

[14] Amogh Dhamdhere and Constantine Dovrolis. Ten years in the
evolution of the internet ecosystem. In Proceedings of ACM IMC,
pages 183–196, New York, NY, USA, 2008. ACM.

[15] Nan Du, Bin Wu, Xin Pei, Bai Wang, and Liutong Xu. Community
detection in large-scale social networks. In Proceedings of the 9th

WebKDD and 1st SNA-KDD 2007, WebKDD/SNA-KDD ’07, pages
16–25, New York, NY, USA, 2007. ACM.

[16] A. Ganesh, L. Massoulie, and D. Towsley. The effect of network
topology on the spread of epidemics. In INFOCOM 2005. 24th

Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings IEEE, volume 2, pages 1455–1466 vol. 2,
March 2005.

[17] Paul Hines, Karthikeyan Balasubramaniam, and Eduardo Cotilla
Sanchez. Cascading failures in power grids. Potentials, IEEE,
28(5):24–30, 2009.

[18] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix Freiling.
Measuring and detecting fast-flux service networks. In In Proceedings

of the 15th Annual Network and Distributed System Security Sympo-

sium (NDSS’08). ISOC, 2008.
[19] Chris Kanich, Christian Krebich, Kirill Levchenko, Brandon Enright,

Geoffrey Voelker, and Vern Paxon. Spamalytics: An empirical analysis
of spam marketing conversion. In Proceedings of the 15th ACM

conference on Computer and communications, pages 3–14. ACM,
2008.

[20] Marc Lelarge. Economics of malware: Epidemic risks model, network
externalities and incentives. In Communication, Control, and Comput-

ing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pages
1353–1360. IEEE, 2009.

[21] University of Oregon. Route Views Project. http://www.routeviews.
org/.

[22] Manuel Gomez Rodriguez, David Balduzzi, and Bernhard Schölkopf.
Uncovering the temporal dynamics of diffusion networks. arXiv

preprint arXiv:1105.0697, 2011.
[23] Yang Wang, D. Chakrabarti, Chenxi Wang, and C. Faloutsos. Epidemic

spreading in real networks: an eigenvalue viewpoint. In Reliable Dis-

tributed Systems, 2003. Proceedings. 22nd International Symposium

on, pages 25–34, Oct 2003.
[24] Yinglian Xie, Fang Yu, Kannan Achan, Eliot Gillum, Moises Gold-

szmidt, and Ted Wobber. How dynamic are ip addresses? In
Proceedings of SIGCOMM, pages 301–312, New York, NY, USA,
2007. ACM.

[25] Jing Zhang, Ari Chivukula, Michael Bailey, Manish Karir, and
Mingyan Liu. Characterization of Blacklists and Tainted Network
Traffic. In Proceedings of PAM, Hong Kong, March 2013.

[26] Ke Zhou, Hongyuan Zha, and Le Song. Learning triggering kernels for
multi-dimensional hawkes processes. In Sanjoy Dasgupta and David
Mcallester, editors, Proceedings of the 30th International Conference

on Machine Learning (ICML-13), volume 28, pages 1301–1309. JMLR
Workshop and Conference Proceedings, May 2013.

