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Intro Introduction

Motivation

Increasingly frequent and high-impact data breaches

I Target, JP Morgan Chase,
Home Depot, to name a few

I Increasing social and economic
impact of such cyber incidents
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Intro Introduction

Limitation of current approaches

I Heavily detection based

I Fail to detect, or too late by the time a breach is detected

I Not suited for cost/damage control

I Urgent need for more proactive measures
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Intro Introduction

Detection

I analogous to diagnosing a
patient who may already be ill
(e.g., by using biopsy).

I [Qian et al. NDSS14, Wang
et al. USENIX Sec14]

Prediction

I predicting whether a presently
healthy person may become ill
based on a variety of relevant
factors.

I [Soska & Christin, USENIX
Sec14]

Our goal:

I
Understand the extent to which one can forecast incidents on an

organizational level.
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Intro Introduction

Objective

To develop the ability to forecast security incidences

I
Applicability: we rely solely on externally observed data; do not
require information on the internal workings of a network or its
hosts.

I
Robustness: we do not have control over or direct knowledge of
the error embedded in the data.

Key idea:

I tap into a diverse set of data that captures di↵erent aspects of a
network’s security posture, ranging from the explicit to latent.
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Intro Introduction

Why prediction?

Forecast enables entirely new classes of applications which are
otherwise not feasible.

I Prediction allows proactive policies and measures to be adopted
rather than reactive measures following the detection.

Forecast enables e↵ective risk management schemes

I
Internal to an org.: more informed decisions on resource
allocation.

I
External to an org.: incentive mechanisms such as cyber
insurance.
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Intro Introduction

Outline of the talk

I
Data and Preliminaries

- Description of the data
- Data pre-processing

I Forecasting methods
- Construction of the predictor

I Forecasting results
- Main prediction results & analysis
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Data Methodology

Datasets at a glance

Category Collection period Datasets

Mismanagement Feb’13 - Jul’13 Open Recursive Resolvers, DNS Source Port,
symptoms BGP misconfiguration, Untrusted HTTPS,

Open SMTP Mail Relays
Malicious May’13 - Dec’14 CBL, SBL, SpamCop, UCEPROTECT,
activities WPBL, SURBL, PhishTank, hpHosts,

Darknet scanners list, Dshield, OpenBL
Incident Aug’13 - Dec’14 VERIS Community Database,
reports Hackmageddon, Web Hacking Incidents

I Mismanagement and malicious activities used to extract features.

I Incident reports used to generate labels for training and testing.
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Data Methodology

Security posture data

Mismanagement symptoms
I Deviation from known best practices; indicators of lack of policy

or expertise:
- Misconfigured- HTTPS cert, DNS (resolver+source port), mail
server, BGP.

I Collected around mid-2013 (pre-incidnts).

Malicious Activity Data: a set of 11 reputation blacklists (RBLs)

I Daily collections of IPs seen engaged in some malicious activity.

I Three malicious activity types: spam, phishing, scan.

I Use data between May 2013 and December 2014.
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Data Methodology

Security incident Data

Three incident datasets

I Hackmageddon

I Web Hacking Incidents Database (WHID)

I VERIS Community Database (VCDB)

Incident type SQLi Hijacking Defacement DDoS

Hackmageddon 38 9 97 59
WHID 12 5 16 45

Incident type Crimeware Cyber Esp. Web app. Else
VCDB 59 16 368 213
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Data Data Pre-processing

Data Pre-processing

Incident cleaning.

I Remove irrelevant cases, e.g., robbery at liquor store, something
happened etc.

Data diversity presents challenge in alignment in time and space.

I Security posture records information at the host IP-address level.

I Cyber incident reports associated with an organization.

I Such alignment is not travial: reallocation makes boundary
unclear.

A mapping process:

I Summarizing owner IDs from RIR databases.

I 4.4 million prefixes listed under 2.6 million owner IDs: finer
degree compared to routing table.

I Sample IP from organization + search in above table.
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Forecast

Outline of the talk

I Data and Preliminaries
- Description of the data
- Data pre-processing

I
Forecasting methods

- Construction of the predictor

I Forecasting results
- Main prediction results & analysis
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Forecast Methodology

Approach at a glance

Feature extraction

I 258 features extracted from the datasets: Primary + Secondary
features.

Label generation

I 1,000+ incident reports from the three incident sets

Classifier training and testing

I Random Forest (RF) classifier trained with features and labels.
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Forecast Methodology

Primary features: raw data

Mismanagement symptoms (5).

I Five symptoms; each measures a fraction

I Predictive power of these symptoms.
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Forecast Methodology

Malicious activity time series (60 ⇥ 3).

I Three time series over a period: spam, phishing, scan.

I Recent 60 v.s. Recent 14.
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Size: number of IPs in an aggregation unit (1)

I To some extent capture the likelihood of an organization
becoming a target of/reproting intentional attacks.
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Forecast Methodology

Secondary features

Quantization and feature extraction
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Persistency

I Measure security e↵orts and responsiveness.

I In each quantized region, measure average magnitude, average
duration, and frequency.
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Forecast Methodology

A look at their predictive power (using data from Nov-Dec’13):
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Forecast Overview of method

Training subjects

A subset victim organizations, Group(1) or incident group.

I Training-testing ratio, e.g., 70-30 or 50-50 split .

I Split strictly according to time: use past to predict future.

Hackmageddon VCDB WHID

Training Oct 13 – Dec 13 Aug 13 – Dec 13 Jan 14 – Mar 14
Testing Jan 14 – Feb 14 Jan 14 – Dec 14 Apr 14 – Nov 14

A random subset of non-victims, Group (0) or non-incident group.

I Random sub-sampling necessary to avoid imbalance; procedure is
repeated over di↵erent random subsets.
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Results

Outline of the talk

I Data and Preliminaries
- Description of the data
- Data pre-processing

I Forecasting methods
- Construction of the predictor

I
Forecasting results

- Main prediction results & analysis

Y.Liu (U. Michigan) Forecasting Cyber Security Incidents 19 / 28



Results Main results

Prediction procedure
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Results Main results

Prediction performance
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Example of desirable operating points of the classifier:

Accuracy Hackmageddon VCDB WHID All

True Positive (TP) 96% 88% 80% 88%
False Positive (FP) 10% 10% 5% 4%
Overall Accuracy 90% 90% 95% 96%
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Results Other observations

Split ratio
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VCDB: 50−50 & Short

VCDB: 70−30 & Short

More training data better performance.
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Results Other observations

Long term prediction
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Results Other observations

Short term v.s. long term prediction
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VCDB: 50−50 & Short

VCDB: 50−50 & Long

Temporal features become outdated.
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Results Other observations

Importance of the Features

Top feature descriptor Value

Untrusted HTTPS Certificates 0.1531
Frequency 0.1089
Organization size 0.0976
Open recursive resolver 0.0928

I Two mismgmt features rank in top 4.

Feature category Normalized importance

Mismanagement 0.3229
Time series data 0.2994
Recent-60 secondary features 0.2602

I Secondary features almost as important as time series data.

I Dynamic features > static features.

I Separate data does NOT achieve comparable results.
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Results Other observations

Case study: Data Breaches of 2014
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AXTEL 0.87

Homedepot 0.85BJP 
Junagadh 0.77

Threshold 0.85

Threshold 0.85

Target 0.84

ACME 0.85 Sony picture 0.90
OnlineTech 0.92Ebay 0.88

I High profile data breaches from 2014: Sony (0.9), Ebay (0.88),
Homedepot (0.85), Target (0.84), OnlineTech/JP Morgan Chase
(0.92)
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Discussion Discussions

Discussions

Errors in the data.

Robustness against advasarial data.

Prediction by incident type.
I O. Thonnard, L. Bilge, A. Kashyap, and M.Lee, Are You At Risk? Profiling

Organizations and Individuals Subject to Targeted Attacks. Financial
Cryptography and Data Security 2015.

I A. Sarabi, P. Naghizadeh, Y. Liu and M. Liu, Prioritizing Security Spending:
A Quantitative Analysis of Risk Distributions for Di↵erent Business Profiles,
WEIS 2015.

Quality of reported data.
I Part of our data can be downladed here: http://grs.eecs.umich.edu.
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Discussion Discussions

Q & A
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