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Introduction Introduction

The power of crowdsourcing

Data collection: participatory sensing, user-generated map :
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Introduction Introduction

Recommendation: rating of movies, news, restaurants, services:
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Introduction Introduction

Social studies: opinion survey, the science of opinion survey:
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Introduction Introduction

Crowd-sourcing market

Data processing: image labeling, annotation

Assignment

Labelers

Labeling 0 1 1

I Paid workers perform computational tasks.

I Hard to measure and evaluate quality objective: competence,
bias, irresponsible behavior, etc.
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Introduction Introduction

One step further: Use the wisdom of crowd

Labeling

Aggregation

Assignment

Labelers

0,0,1 1,0,1 0,1,0

0 1 0

I Redundant assignment.

I Label aggregation.
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Introduction Introduction

Our vision:

Labeling Time

Aggregation

Assignment

Labelers

0,0,1 1,0,1 0,1,0

0 1 0

I Labeler selection. (first step)

I Adaptive learning. (second step)

I A weighted version of selection. (one more step)
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Introduction Introduction

Our objective

To make the most effective use of the crowdsourcing system

I Cost in having large amount of data labeled is non-trivial

I Time constrained machine learning tasks.

A sequential/online learning framework

I Over time learn which labelers are more competent, or whose
reviews/opinion should be valued more.

I Quality control rather than random assignment

I Closed-loop, causal.

Liu (Michigan) Online Labeler Selection June 2015 8 / 36



Introduction Introduction

Multiarmed bandit (MAB) framework

A sequential decision making and learning framework:

I Objective: select the best of a set of choices (“arms”)

I Principle: repeated sampling of different choices (“exploration”),
while controlling how often each choice is used based on their
empirical quality (“exploitation”).

I Performance measure: “regret” – difference between an algorithm
and a benchmark.
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Introduction Introduction

Challenges and key ideas

Main challenge in crowdsourcing: ground truth

I True label of data remains unknown

I If view each labeler as a choice/arm: unknown quality of outcome
(“reward”).

Key features:

I Mild assumption on the collective quality of the crowd; quality of
an individual is estimated against the crowd.

I Online learning: Learning occurs as data/labeling tasks arrive.

I Comparing against optimal static selections.
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Introduction Introduction

Outline of the talk

Problem formulation

Online solution

I Simple/weighted majority voting

Extensions and discussions

Experiment results

I Numerical results & Results on AMT data

Conclusion and on-going works
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Labeler selection Model

Labeler selection

M labelers; labelers i has accuracy pi (can be task-dependent).

I No two exactly the same: pi 6= pj for i 6= j , and 0 < pi < 1, ∀i .
I Collective quality: p̄ :=

∑
i pi/M > 1/2.

I Probability that a simple majority vote over all M labelers is
correct: amin := P(

∑
i Xi/M > 1/2).

I If p̄ > 1/2 and M > log 2
p̄−1/2

, then amin > 1/2.

Unlabeled tasks arrive at t = 1, 2, · · · .
I User selects a subset St of labelers for task at t.

I Labeling payment of ci for each task performed by labeler i .
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Labeler selection Model

Labeling outcome/Information aggregation

Labeling Time

Aggregation

Assignment

Labelers

0,0,1 1,0,1 0,1,0

0 1 0

Aggregating results from multiple labelers:

I A task receives a set of labels: {Li (t)}i∈St .

I Use simple majority voting to compute the label output: L∗(t).
(extensible to weighted majority voting)
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Labeler selection Model

Probability of correct labeling outcome: π(St).

I Optimal set of labelers: S∗ that maximizes π(S).

π(St) =
∑

S :S⊆St ,|S|≥d |St |+1
2 e

∏
i∈S

pi ·
∏

j∈St\S

(1− pj)

︸ ︷︷ ︸
Majority wins

+

∑
S:S⊆St ,|S|= |St |2

∏
i∈S pi ·

∏
j∈St\S(1− pj)

2︸ ︷︷ ︸
Ties broken equally likely

.
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Labeler selection Model

Assuming known {pi}, S∗ can be obtained using a linear search

Theorem

Under the simple majority voting rule, |S∗| is an odd number.
Furthermore, S∗ is monotonic: if i ∈ S∗ and j 6∈ S∗, then we must
have pi > pj .

Liu (Michigan) Online Labeler Selection June 2015 15 / 36



Labeler selection Model

Assuming known {pi}, S∗ can be obtained using a linear search

Theorem

Under the simple majority voting rule, |S∗| is an odd number.
Furthermore, S∗ is monotonic: if i ∈ S∗ and j 6∈ S∗, then we must
have pi > pj .

Liu (Michigan) Online Labeler Selection June 2015 15 / 36



Labeler selection Model

Objective of our online solution

Labeler expertise pi s being unknown a priori

I Goal: Gradually learn labelers’ quality and make selections
adaptively

Performance measure:

I Comparing with the optimal selection (static):

R(T ) = Tπ(S∗)− E [
T∑
t=1

π(St)]
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Online solution

Outline of the talk

Problem formulation

Online solution

I Simple/weighted majority voting

Extensions and discussions

Experiment results

I Numerical results & Results on AMT data

Conclusion and on-going works
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Online solution Algorithm

An online learning algorithm

Exploration Exploitation 

Task arrivals 
Time 

Tasks used for testing  

x 

Interlveaing explorations of MAB and Crowd-sourcing: Double
exploration

I There is a set of tasks E (t) (∼ log t) used for testing purposes.

I These or their independent and identical variants are repeatedly
assigned to the labelers (∼ log t). 1

1More discussions follow later on independence.
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Online solution Algorithm

Exploration Exploitation 

Task arrivals 
Time 

Tasks used for testing  

x 

Two types of time steps:

I Double exploration: all M labelers are used. Exploration is
entered if (1) the number of testers falls below a threshold
(∼ log t), or if (2) the number of times a tester has been tested
falls below a threshold (∼ log t).

I Exploitation: the estimated S̃∗ is used to label the arriving task
based on the current estimated {p̃i}.
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Online solution Algorithm

Exploration Exploitation 

Task arrivals 
Time 

Tasks used for testing  

x 

Three types of tasks:

I Testers: those arriving to find (1) true and (2) false. These are
added to E (t) and are repeatedly used to collect independent
labels whenever (2) is true subsequently.

I Throw-aways: those arriving to find (2) true. These are given a
random label.

I Keepers: those arriving to find both (1) and (2) false. These are
given a label outcome using the best estimated set of labelers.

Liu (Michigan) Online Labeler Selection June 2015 20 / 36



Online solution Algorithm

Exploration Exploitation 

Task arrivals 
Time 

Tasks used for testing  

x 

Accuracy update

I Estimated label on tester k at time t: majority label over all test
outcomes up to time t.

I p̃i at time t: the % of times i ’s label matches the majority vote
known at t out of all tests on all testers.
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Online solution Algorithm

Regret

Main result:

R(T ) ≤ Const(S∗,∆max,∆min, δmax, δmin, amin) log2(T ) + Const

I ∆max = maxS 6=S∗ π(S∗)− π(S), δmax = maxi 6=j |pi − pj |.
I First term due to exploration; second due to exploitation.

I Can obtain similar result on the cost C (T ).
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Online solution Weighted majority voting

Weighted majority voting

Labeling Time

Aggregation

Assignment

Labelers

0,0,1 1,0,1 0,1,0

log
𝑝௜

1 − 𝑝௜

I Each labeler i ’s decision is weighed by log pi
1−pi .

Theorem

Under the weighted majority vote and assuming pi ≥ 0.5,∀i , the
optimal set S∗ is monotonic, i.e., if we have i ∈ S∗ and j 6∈ S∗ then
we must have pi > pj .
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Online solution Weighted majority voting

Main results on weighted majority voting:

I R(T ) ≤ O(log2 T ), but with strictly larger constants.

I Have to account for additional error in estimating the weights
when determining label outcome.

I A larger constant: slower convergence to a better target.
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Discussions

Outline of the talk

Problem formulation

Online solution

I Simple/weighted majority voting

Extensions and discussions

Experiment results

I Numerical results & Results on AMT data

Conclusion and on-going works
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Discussions Discussion

Re-assignment of the testers

IID noise insertion

Random delay

I Commonly adopted in survey methodology to ensure valid
responses.

I Bounded delay τmax leads to τmax-fold regret.
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Discussions Discussion

Other extensions

Prior knowledge on several constants

I Exploration length depends on several system parameters.

I Sub-logarithmic remedy without knowing prior knowledge.

Improve the bound by improving amin: weed out bad labelers.

I Ranking based on counting of disagreement.

I Start the weeding out from the end of list.

I Requires only O(logT ) samples to achieve a bounded regret.
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Discussions Discussion

Other extensions cont.

Labelers with different type of tasks

I Finite number of types: Similar results.

I Infinite number of types.

I Continuous MAB.

I Sub-linear regret bound.

With delayed arrival of ground-truth

I O(logT ) regret time uniformly.
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Experiment results

Outline of the talk

Problem formulation

Online solution

I Simple/weighted majority voting

Extensions and discussions

Experiment results

I Numerical results & Results on AMT data

Conclusion and on-going works
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Experiment results Synthetic data

Experiment I: simulation with M = 5

Accumulative regret & Average regret R(T )/T
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Effect of amin: higher amin leads to much better performance.
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Experiment results Synthetic data

Performance comparison

labeler selection v.s. full crowd-sourcing (simple majority vote)
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Experiment results Synthetic data

Comparing weighted and simple majority vote
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Simple majority voting
Weighted majority voting

M 5 10 15 20

Full crowd-sourcing (majority vote) 0.5154 0.5686 0.7000 0.7997
Majority vote w/ LS OL 0.8320 0.9186 0.9434 0.9820

Weighted majority vote w/ LS OL 0.8726 0.9393 0.9641 0.9890

Table: Average reward per labeler: there is a clear gap between with and
without using LS OL.
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Experiment results AMT datasets

Experiment II: on a real AMT dataset

The dataset

I Contains 1,000 images each labeled by the same set of 5 AMTs.

I Labels are on a scale from 0 to 5, indicating how many scenes are
seen from each image.

I A second dataset summarizing keywords for scenes of each image:
use this count as the ground truth.

Counting number of disagreement (online):

AMT1 AMT2 AMT3 AMT4 AMT5

# of disagree 348 353 376 338 441

Table: Total number of disagreement each AMT has
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Experiment results AMT datasets

Performance comparison
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Full Crowd : avg=1.63
w/ LS_OL: avg=1.36

(L) AMT 5 was quickly weeded out; eventually settled on the optimal
set of AMTs 1, 2, and 4 for most of the time.

(R) CDF of all images’ labeling error at the end of this process.
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Conclusion Conclusion

Conclusion

We discussed a quality control problem in labeler market

I How to select the best set of labelers over a sequence of tasks.

I An algorithm that estimates labeler’s quality by comparing against
(weighted) majority vote; new regret bound.

Currently under investigation

I Lower bound on the regret in the labeler selection problem.

I Hypothesis testing & coupling argument.
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Conclusion Conclusion

Q & A

Thank you. Any question?

http://www.umich.edu/~youngliu
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