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Abstract

We consider a learner’s problem of acquiring data dynamically for training a re-
gression model, where the training data are collected from strategic data sources.
A fundamental challenge is to incentivize data holders to exert effort to improve
the quality of their reported data, despite that the quality is not directly verifiable
by the learner. In this work, we study a dynamic data acquisition process where
data holders can contribute multiple times. Using a bandit framework, we leverage
on the long-term incentive of future job opportunities to incentivize high-quality
contributions. We propose a Strategic Regression-Upper Confidence Bound (SR-
UCB) framework, an UCB-style index combined with a simple payment rule,
where the index of a worker approximates the quality of his past contributions
and is used by the learner to determine whether the worker receives future work.
For linear regression and certain family of non-linear regression problems, we
show that SR-UCB enables a O

(√
logT/T

)
-Bayesian Nash Equilibrium (BNE)

where each worker exerting a target effort level that the learner has chosen, with
T being the number of data acquisition stages. The SR-UCB framework also
has some other desirable properties: (1) The indexes can be updated in an on-
line fashion (hence computationally light). (2) A slight variant, namely Private
SR-UCB (PSR-UCB), is able to preserve (O

(
log−1 T

)
,O
(
log−1 T

)
)-differential

privacy for workers’ data, with only a small compromise on incentives (achieving
O
(
log6 T/

√
T
)
-BNE).

1 Introduction

More and more data for machine learning nowadays are acquired from distributed, unmonitored
and strategic data sources and the quality of these collected data is often unverifiable. For example,
in a crowdsourcing market, a data requester can pay crowd workers to label samples. While this
approach has been widely adopted, crowdsourced labels have been shown to degrade the learning
performance significantly, see e.g., [19], due to the low quality of the data. How to incentivize
workers to contribute high-quality data is hence a fundamental question that is crucial to the long-
term viability of this approach.

Recent work [2, 4, 10] has considered incentivizing data contributions for the purpose of estimating
a regression model. For example Cai et al. [2] design payment rules so that workers are incentivized
to exert effort to improve the quality of their contributed data, while Cummings et al. [4] design
mechanisms to compensate privacy-sensitive workers for their privacy loss when contributing their
data. These studies focus on a static data acquisition process, only considering one-time data ac-
quisition from each worker. Hence, the incentives completely rely on the payment rule. However,
in stable crowdsourcing markets, workers return to receive additional works. Future job opportuni-
ties are thus another dimension of incentives that can be leveraged on to motive high-quality data
contributions. In this paper, we study dynamic data acquisition from strategic agents for regression
problems and explore the use of future job opportunities to incentivize effort exertion.
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In our setting, a learner has access to a pool of workers and in each round decides on which workers
to ask for data. We propose a Multi-armed Bandit (MAB) framework, called Strategic Regression-
Upper Confidence Bound (SR-UCB), that combines a UCB-style index rule with a simple per-round
payment rule to align the incentives of data acquisition with the learning objective. Intuitively,
each worker is an arm and has an index associated with him that measures the quality of his past
contributions. The indexes are used by the learner to select workers in the next round. While
MAB framework is natural for modeling selection problem with data contributors of potentially
varying qualities, our setting has two challenges that are distinct from classical bandit settings.
First, after a worker contributes his data, there is no ground-truth observation to evaluate how well
the worker performs (or reward as commonly referred to in a MAB setting). Second, a worker’s
performance is a result of his strategic decision, e.g., how much effort he exerts, instead of being
purely exogenously. Our SR-UCB framework overcomes the first challenge by evaluating the quality
of an agent’s contributed data against an estimator trained on data provided by all other agents to
obtain an unbiased estimate of the quality, an idea inspired by the peer prediction literature [11,16].
To address the second challenge, our SR-UCB framework enables a game-theoretic equilibrium
with workers exerting target effort levels chosen by the learner. More specifically, in addition to
proposing the SR-UCB framework, our contributions include:

• We show SR-UCB helps simplify the design of payment, and successfully incentivizes effort
exertion for acquiring data for linear regression. Every worker exerting a targeted effort level
(for labeling and reporting the data) is a O

(√
logT/T

)
-Bayesian Nash Equilibrium (BNE). We

can also extend the above results to a certain family of non-linear regression problems.
• SR-UCB indexes can be maintained in an online fashion, hence is computationally light.
• We extend SR-UCB index policy to further provide privacy guarantees (PSR-UCB), without

hurting the provided incentive much. PSR-UCB is (O
(
log−1 T

)
,O
(
log−1 T

)
)-differentially pri-

vate and every worker exerting the targeted effort level is a O
(
log6 T/

√
T
)
-BNE.

2 Related work

Recent works have formulated various strategic learning settings under different objectives [2,4,10,
21]. Among these, payment based solutions are proposed for regression problems when data come
from workers who are either effort sensitive [2] or privacy sensitive [4]. These solutions achieve
game-theoretic equilibria for guaranteeing the quality of the contributed data. The basic idea is
inspired by a much older and mature research literature, namely proper scoring rules [8] and peer
prediction [16]. Both works consider a static data acquisition procedure, while our work focuses
on a dynamic data acquisition process for regression problems. By leveraging on the long-term
incentive of future job opportunities, our work has a much simpler payment rule than those of [2]
and [4] and relaxes some of the restrictions on the learning objectives (e.g., well behaved [2]), at the
cost of a weaker equilibrium concept (approximate BNE in this work vs. dominate-strategy in [2]).

MAB is a sequential decision making and learning framework which has been extensively studied.
It is nearly impossible to survey the entire bandit literature, but it starts roughly with the seminal
work by Lai et al [13], where lower and upper bounds on asymptotic regret on bandit selection are
derived. More recently, finite time algorithms have been developed in [1] for i.i.d. bandits. Different
from the classical settings, in this work we need to deal with challenges such as no ground-truth
observations for bandits, as well as bandit’s rewards being strategically decided. A couple of recent
works [7, 15] also considered bandit setting with strategic arms. Our work differs from them in that
we consider a regression learning setting without ground-truth observations, and also we consider
long-term workers whose decisions on reporting data can change over time.

Our work and motivations have some resemblance to online contract design problems for a principal-
agent model [9]. But unlike the online contract design problems, our learner cannot verify the
quality of finished work after each task assignment. Also instead of focusing on learning the optimal
contract, we use bandit to mainly maintain a long-term incentive to induce high-quality data.

3 Formulation

The learner observes a set of features data X for training. To make our analysis tractable, we assume
each x ∈ X is sampled uniformly from a unit ball with dimension d: x ∈ Rd s.t. ||x||2 ≤ 1. Each
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x associates with a ground-truth response (or label) y(x), which cannot be observed directly by the
learner. Suppose x and y(x) are related through a function f : Rd → R that y(x) = f (x)+ z, where
z is an i.i.d. zero-mean noise with variance σz. For example, for linear regression f (x) = θT x for
some θ ∈ Rd . The learner would like to learn a good estimate f̃ of f . In order to do so, the learner
needs to figure out y(x) for different x ∈ X for training purpose. To obtain an estimate ỹ(x) of y(x),
the learner assigns each x to a selected worker to obtain a label.

Agent model: Suppose we have a set of workers U = {1,2, ...,N} with N ≥ 2. After receiving the
task, each worker will decide on the effort level e he wants to exert to generate an outcome – higher
effort leads to a better outcome, but also incurs higher cost. We assume e has bounded support
[0, ē] for all worker i ∈U. Each worker’s decision on effort exertion is affected by his incentives in
the market. In this paper we consider the model that each worker wants to maximize his expected
payment minus cost for effort exertion. The labeling outcome ỹ(x) will be given back to the learner.
Denote by ỹi(x,e) the label returned by worker i for data instance x (if assigned) with chosen effort
level e. We consider the following effort-sensitive agent model: ỹi(x,e) = f (x)+ z+ zi(e), where
zi(e) is a zero-mean noise with variance σi(e). Note σi(e) can be different for different workers,
and σi(e) is decreasing in e,∀i. All z,zis have bounded support such that |z|, |zi| ≤ Z. We will be
assuming the cost for exerting e amount of effort is simply e for every worker.

Learner’s objective Suppose the learner wants to learn f with |X | samples. Then the learner finds
effort levels e∗ for each data point such that

e∗ ∈ argmin{e(x)}x∈X
ERROR( f̃ ({x, ỹ(x,e(x))}x∈X ))+λ ·PAYMENT({e(x)}x∈X ) ,

where e(x) is the effort level for sample x, and {ỹ(x,e(x))}x∈X is the set of labeled responses for
training data X . f̃ (·) is the regression model trained over this data. The learner assigns the data
and pay appropriately to induce the corresponding effort level e∗. This formulation is not unlike
the one presented in [2]. The ERROR term captures the expected error of the trained model using
collected data (e.g., measure in squared loss), while the PAYMENT term captures the total expected
budget learner spends to receive the data. This payment quantity depends on the mechanism that
the learner chooses to use and is the expected payment of the mechanism to induce selected effort
level for each data point {e(x)}x∈X . λ > 0 is a weighting factor, which is a constant. It is clear that
the objective function depends on σis. We assume for now that the learner knows σi(·)s1, and the
optimal e∗ can be computed.

4 StrategicRegression-UCB (SR-UCB): A general template

We propose SR-UCB for solving the dynamic data acquisition problem. SR-UCB enjoys a bandit
setting, where we borrow the idea from classical UCB algorithm [1], which maintains an index
for each arm balancing exploration and exploitation. While a bandit framework is not necessarily
the best solution for our dynamic data acquisition problem, we provide reasoning on why a bandit
framework can serve as a promising option. As utility maximizers, workers would like to be assigned
tasks, if the marginal gain for taking a task in positive. A bandit algorithm can help execute the
assignment process. Meanwhile the arm selection (of bandit algorithms) thus introduces competition
among workers in improving their indexes, which the selection is based upon. When such indexes
are well designed, the competition will be reflecting on the amount of efforts exerted by agents.

SR-UCB contains the following two critical components:

Per-round payment For each worker i, once selected to label a sample x, we will assign a base
payment pi = ei + γ, 2 after reporting the labeling outcome, where ei is the desired effort level that
we would like to induce from worker i (for simplicity we have assumed the cost for exerting effort ei
equals to the effort level), and γ > 0 is a small quantity. The design of this base payment is to ensure
once selected, a worker’s base cost will be covered. Note the above payment depends on neither the
assigned data instance x nor the reported outcome ỹ. Therefore such a payment procedure can be
pre-defined after the learner sets a target effort level.

1This assumption can be relaxed. See our supplementary materials for the case with homogeneous σ.
2We assume workers have knowledge of how the mechanism sets up this γ.
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Assignment The learner assigns multiple task {xi(t)}i∈d(t) at time t, with d(t) denoting the set of
workers selected at t. Denote by ei(t) the effort level worker i exerted for xi(t), if i ∈ d(t). Note all
{xi(t)}i∈d(t) are different tasks, and each of them is assigned to exactly one worker. The selection of
workers will depend on the notion of indexes. Details are given in Algorithm 1.

Algorithm 1 SR-UCB: Worker index & selection
Step 1. For each worker i, first train estimator f̃−i,t using data {x j(n) : 1≤ n≤ t−1, j ∈ d(n), j 6=
i}, that is using the data collected from workers j 6= i up to time t. When t = 1, we will initialize
by sampling each worker at least once such that f̃−i,t can be computed.
Step 2. Then compute the following index for worker i at time t

Ii(t) =
1

ni(t)

t

∑
n=1

1(i ∈ d(n))
[

a−b
(

f̃−i,t(xi(n))− ỹi(n,ei(n))
)2]

+ c

√
log t
ni(t)

,

where ni(t) is the number of times worker i has been selected up to time t. a,b are two positive
constants for “scoring”, and c is a normalization constant. ỹi(n,ei(n)) is the corresponding label
for task xi(n) with effort level ei(n), if i ∈ d(n).
Step 3. Based on above index, we will select d(t) at time t such that d(t) := { j : I j(t) ≥
maxi Ii(t)− τ(t)}, where τ(t) is a perturbation term decreasing in t.

Remarks are in order. (1) Different from classical bandit setting, when calculating the indexes, there
is no ground-truth observation we can make to evaluate the performance of each worker. Therefore
we adopt the notion of scoring rule [8]. Particularly the one we used above is the well-known Brier
scoring rule: B(p,q) = a−b(p−q)2 . (2) The scoring rule based index looks similar to the payment
strategy studied in [2,4]. But as we will show later, under our framework the selection of a,b is much
less sensitive to different problem settings, as with an index policy, only the relative values matter
(ranking). This is another benefits of separating payment from selection. (3) We are not going to
only select the best arm with the highest index. Instead we are going to select workers whose index
is within a certain range of the maximum one (a confidence region) – workers may have competing
expertise level, selecting only one of them will de-incentivize workers’ effort exertion.

4.1 Solution concept

Denote by e(n) := {e1(n), ...,eN(n)}, and e−i(n) = {e jn} j 6=i. We define approximate Bayesian Nash
Equilibrium as our solution concept:

Definition 1. Suppose SR-UCB runs for T stages. {ei(t)}N,T
i=1,t=1 is a π-BNE if ∀i,{ẽi(t)}T

t=1:

1
T
E[

T

∑
t=1

(pi− ei(t))1(i ∈ d(t))
∣∣{e(n)}n≤t ]≥

1
T
E[

T

∑
t=1

(pi− ẽi(t))1(i ∈ d(t))
∣∣{ẽi(n),e−i(n)}n≤t ]−π.

This is to say by deviating, each worker will gain π more net-payment per around. We will establish
our main results in terms of π-BNE. The reason we adopt such a notion is in a sequential setting it
is generally hard to achieve strict BNE or even other stronger notion, as any one step deviation may
not affect a long term evaluation by much. 3 In this regard, approximate BNE is arguably the best
solution concept we can hope for.

5 Linear regression

5.1 Settings and a warm up scenario

In this section we start presenting our results for a simple linear regression task such that the feature
x and observation y are linearly related via an unknown θ: y(x) = θT x+ z, ∀x ∈ X . Let’s start with
assuming all workers are statistically identical such that σ1 = σ2 = ... = σN . This is an easier case
to start with to serve as a warm up. It is known that given training data, we can find an estimation θ̃

3Certainly we can re-run any BNE or dominant strategy for a one shot setting, e.g. [2], for every time step.
But such solution does not incorporate long term incentives.
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that minimizes a non-regularized empirical risk function: θ̃ = argmin
θ̂∈Rd ∑x∈X (y(x)− θ̂T x)2 (linear

least square). To put this model into SR-UCB, denote θ̃−i(t) as the linear least square estimator
trained using data from workers j 6= i up to time t−1. And Ii(t) := Si(t)+ c

√
log t/ni(t), with

Si(t) :=
1

ni(t)

t−1

∑
n=1

1(i ∈ d(n))
[

a−b
(

θ̃
T
−i(t)xi(n)− ỹi(n,ei(n))

)2]
. (5.1)

Since ||x||2 ≤ 1 and suppose ||θ||2 ≤M, we then have ∀t,n, i, (θ̃T
−i(t)xi(n)− ỹi(n,ei(n)))2 ≤ 8M2 +

2Z2. Choose a,b such that a− (8M2 + 2Z2)b ≥ 0, then we have 0 ≤ a− (8M2 + 2Z2)b ≤ Si(t) ≤
a, ∀i, t. Set τ(t) := O

(√
log t/t

)
– the basic idea is that with t number of samples, the uncertainties

in the indexes can be upper bounded at the order of O
(√

log t/t
)
, including both the uncertainties

coming from score calculation and bias term. Thus, to not miss a competitive worker, we set the
tolerance to be at the same order. We first make the following assumption on the smoothness of σ.
Assumption 1. We assume σ(e) is convex on e∈ [0, ē], with gradient σ′(e) being both upper bound-
ed, and lower bounded away from 0, i.e., L≥ |σ′(e)| ≥ L > 0, ∀e.

The learner wants to learn f with total NT (= |X | or dNTe = |X |) samples, ideally T from each
worker (since all workers are statistically equivalent). We run SR-UCB for T steps (and the learner
knows T ). Then the learner finds an effort level e∗ such that

e∗ ∈ argmineEx,y,ỹ

[
θ

T ({xi(n), ỹi(n,e)}N,T
i=1,n=1) · x− y

]2

+λ · (e+ γ)NT

Theorem 1. Under SR-UCB for linear least square, set fixed payment pi,∀i as follows: pi = e∗+
γ, γ = Ω(

√
logT/T ) , and set c to be large enough c ≥ Const.(M,Z,N,b), τ(t) := O

(√
log t/t

)
.

Workers have full knowledge of above. Then exerting effort ei(t)≡ e∗,∀t is O
(√

logT/T
)
-BNE ∀i.

The marginal payment (payment minus the effort cost) per task can be made arbitrarily small by
setting γ exactly on the order of O

(√
logT/T

)
, and pi− e∗ = γ = O

(√
logT/T

)
→ 0, as T → ∞.

Our solution concept relies heavily on forming a race among workers. By establishing the conver-
gence of bandit indexes to a function of effort (via σ(·)), we show when the other workers j 6= i
follow the equilibria for exerting effort, worker i will be selected w.h.p. at each round, if he al-
so puts in the same amount of effort. On the other hand, if worker i shirks from doing so by much
(O
(√

logT/T
)
), his number of selection will go down in order. This establishes the π-BNE. Though

as will be shown in next section, as long as there exists one competitive worker, all others will be in-
centivized to exert effort, it is still true that if all workers agree to shirk from exerting effort, they will
arrive at a similar equilibria as we proved above (equally in-competitive is as good as equally com-
petitive). This caveat can be removed with the following remedy. When there are≥ 2 workers being
selected as winners, each of them will be assigned tasks with certain probability 0 < ps < 1. While
when there is a single winner, the winner will be selected w.p. 1. Set ps := 1−O

(√
logT/T/γ

)
. So

with probability 1− ps = O
(√

logT/T/γ
)
, even the “winning”workers will miss the selection. This

process is independent of the bandit selection procedure. With above change, exerting e∗ still leads
to a O

(√
logT/T

)
-BNE, while (every worker) exerting any effort level that is ∆e>O

(
γ
)

away from
target effort level is not a π-BNE with π≤ O

(√
logT/T

)
.

Equilibria with heterogeneous effort level So far we only discussed about the equilibria at which
workers exert consistent level of efforts over time. As what we can similarly show in the proof for
Theorem 1, if every other worker j 6= i is exerting the same level of effort over time, deviating to any
other heterogeneous effort exertion strategy will not help worker i gain much in his average profit
(O
(√

logT/T
)
). Analyzing the case when every worker is exerting different effort level at different

time is challenging, so is on workers’ side. This remains an interesting future direction.

5.2 Linear regression with different σ

Now we consider the more realistic case that different workers have different noise-effort function
σs. W.l.o.g., we assume σ1(e)<σ2(e)< ... <σN(e),∀e4. In such a setting, ideally we would always

4Combing with the results for homogeneous workers, we can again easily extend the results to the case with
workers have both same and different expertise level.
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like to collect data from worker 1 since he has the best expertise level (lowest variance in labeling
noise). Suppose we are targeting an effort level e∗1 from data source 1 (the best data source). We
first argue that we also need to incentivize worker 2 to exert competitive effort level e∗2 such that
σ1(e∗1) = σ2(e∗2), and we do assume such a e∗2 exists5. This also naturally implies that e∗2 > e∗1 as
worker 1 contributes data with less variance in noise at the same effort level. The reason is similar
to the homogeneous setting – over time workers form a competition on σi(ei). Having a competitive
peer will motivate workers to exert as much effort as he can (up to the payment). Therefore the goal
for such a learner (with 2T samples to assign) is to find a effort level e∗ such that 6

e∗ ∈ argmine2:σ1(e1)=σ2(e2)
Ex,y,ỹ

[
θ

T ({xi(n), ỹi(n,ei))}2,T
i=1,n=1)x− y

]2

+λ · (e2 + γ)2T.

Set one step payment to be pi = e∗+ γ,∀i. Denote e∗ = {e1(t) ≡ {e∗1 : σ1(e∗1) = σ2(e∗)}, ei(t) ≡
e∗, ∀i≥ 2}t . Note for i > 2 we have σi(e∗)−σ1(e∗1)> 0. While we have argued about the necessity
for choosing the top two most competitive workers, we haven’t mentioned the optimality of doing
so. In fact selecting the top two is the best we can do. Suppose on the contrary, the optimal solution
is by selecting top k > 2 workers, at effort level ek. According to our solution, we targeted the effort
level that leads to variance of noise σk(ek) (so the least competitive worker will be incentivized).
Then we can simply target the same effort level ek, but migrating the task loads to only the top two
workers – this keeps the payment the same, but the variance of noise now becomes σ2(ek)< σk(ek),
which leads to better performance. Denote ∆1 := σ3(e∗1)−σ1(e∗) > 0 and assume Assumption 1
applies to all σis. We prove:

Theorem 2. Under SR-UCB for linear least square, set c ≥ Const.(M,Z,b,∆1), Ω(
√

logT/T ) =
γ≤ ∆1

2L , τ(t) := O
(√

log t/t
)
, exerting efforts following e∗ is O

(√
logT/T

)
-BNE for all workers.

Performance with acquired data If workers follow the π-BNE, the contributed data from the
top two workers (who have been selected the most number of times) will have the same vari-
ance σ1(e∗1). Then following results in [4], the performance of the trained classifier is bounded
by O

(
σ1(e∗1)/(∑i=1,2 ni(T ))2

)
w.h.p. Ideally we want to have ∑i=1,2 ni(T ) = 2T . The expected

performance loss (due to missed sampling & wrong selection, which is bounded at the order of
O
(
logT

)
) is bounded by E[σ1(e∗1)/(∑i=1,2 ni(T ))2−σ1(e∗1)/(2T )2]≤ O

(
σ(e∗)2logT/T 3

)
w.h.p. .

Regularized linear regression Ridge estimator has been widely adopted for solving linear regres-
sion. The objective is to find a linear model θ̃ that minimizes the following regularized empirical
risk: θ̃ = argmin

θ̂∈Rd ∑x∈X (y(x)− θ̂T x)2 +ρ||θ̂||22 , with ρ > 0 being the regulation parameter. We
claim that simply changing the f̃−i,t(·) in SR-UCB to the output from above ridge regression, the
O
(√

logT/T
)
-BNE for inducing an effort level e∗ will hold. Different from the non-regularized

case, the introduce of the regulation term will add bias in θ̃T
−i(t), which gives a biased evaluation of

indexes. Such bias poses additional challenge for payment function design in static data acquisition.
We find proving the convergence of θ̃T

−i(t) (so again the indexes will converge properly) enables an
easy adaption of our previous results for non-regularized case to ridge regression:
Lemma 1. With n i.i.d. samples w.p. ≥ 1− e−Kn (K > 0 is a constant), ||θ̃−i(t)−θ||22 ≤ O

( 1
n2

)
.

Non-linear regression The basic idea for extending the results to non-linear regression is inspired
by the consistency results on M-estimator [14], when the error of training data satisfies zero mean.
Similar to the reasoning for Lemma 1, if ( f̃−i,t(x)− f (x))2→ 0, we can hope for an easy adaptation
of our previous results. Suppose the non-linear regression model can be characterized by a parameter
family Θ, where f is characterized by parameter θ, and f̃−i,t by θ̃i(t). Due to the consistency
of M-estimator we will be having ||θ̃i(t)− θ||2 → 0; More specifically, according to the results
from [18], for non-linear regression model we can establish a O

(
1/
√

t
)

convergence rate with t
training samples. When f is Lipschitz in parameter space, i.e., there exists a constant LN > 0 such
that | f̃−i,t(x)− f (x)| ≤ LN ||θ̃i(t)−θ||2. By dominant convergence theorem we also have ( f̃−i,t(x)−
f (x))2→ 0, and ( f̃−i,t(x)− f (x))2 ≤ O

(
1/t
)
. The rest of the proof can then follow.

Example 1. Logistic function f (x) = 1
1+e−θT x

satisfies Lipschitz condition with LN = 1/4.

5When the supports for σ1(·),σ2(·) overlap for a large support range.
6Since we only target the top two workers, we can limit the number of acquisitions on each stage to be no

more than two, so the number of query does not go beyond 2T .
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6 Computational issues
The bandit framework provides us a nice way for building a “reputation system” for data market to
incentivize effort using long term incentive, thus addressing one of the challenges brought up in [20].
Nevertheless, in order to update the indexes and select workers adaptively, we suffer from a couple
of computational issues. First in order to update the index for each worker at any time t, a new
estimator θ̃−i(t) (using data from all other workers j 6= i up to time t−1) needs to be re-computed.
Secondly we need to re-apply θ̃−i(t) to every collected sample from worker i,{(xi(n), ỹi(n,ei(n)) :
i ∈ d(n),n = 1,2, ...t−1} from previous rounds. We propose online variants of SR-UCB.

Online update of θ̃−i(·) Thanks to results from online learning literature, instead of re-computing
θ̃−i(t) at each step, which involves re-calculating the inverse of a covariance matrix (e.g., (ρI +
XT X)−1 for ridge regression) whenever there is a new sample point arriving, we can update θ̃−i(t)
in an online fashion, which is computationally much more efficient. We demonstrate our results with
ridge linear regression. Start with an initial model θ̃online

−i (1). Denote by (x−i(t), ỹ−i(t)) any newly
arrived sample at time t from worker j 6= i. Update θ̃online

−i (t +1) (for computing Ii(t +1)) as [17]:

θ̃
online
−i (t +1) := θ̃

online
−i (t)−ηt ·∇θ̃online

−i (t)

[
(θT x−i(t)− ỹ−i(t))2 +ρ||θ||22

]
,

Notice there could be multiple such data points arriving at each time – in which case we will update
sequentially in an arbitrarily order. It is also possible that there is no sample point arriving from
workers other than i at a time t, in which case we simply do not perform an update. Name this online
updating SR-UCB as OSR1-UCB. With online updating, the accuracy of trained model θ̃online

−i (t +
1) converges slower, so is the accuracy in the indexes for characterizing workers’ performance.
Nevertheless we prove exerting targeted effort exertion e∗ is O

(√
logT/T

)
-BNE under OSR1-UCB

for ridge regression, using convergence results for θ̃online
−i (t) proved in [17].

Online score update Online updating can also help compute Si(t) (in Ii(t)) efficiently. Instead of
repeatedly re-calculating the score for each data point (in Si(t)), we only update the newly assigned
samples which has not been evaluated yet, by replacing θ̃online

−i (t) with θ̃online
−i (n) in Si(t):

Sonline
i (t) :=

1
ni(t)

t−1

∑
n=1

1(i ∈ d(n))
[

a−b
(
(θ̃online
−i (n))T xi(n)− ỹi(n,ei(n))

)2]
. (6.1)

With less aggressive update, again the index terms’ accuracies converge slower than before, which
is due to the fact the older data is scored using an older (less accurate) version of θ̃online

−i without
being further updated. We propose OSR2-UCB where we change the index and bias term of SR-
UCB to: Sonline

i (t)+ c
√
(log t)2/ni(t), to deal with the slower convergence of indexes. We establish

O
(
logT/

√
T
)
-BNE for worker’s effort exertion –the change is due to the change of the bias term.

7 Privacy preserving SR-UCB
With a repeated data acquisition setting, workers’ privacy in data may leak repeatedly. In this section
we study an extension of SR-UCB to preserve privacy of each individual worker’s contributed data.
Denote the training data collected as D := {ỹi(t,ei(t))}i∈d(t),t . We quantify privacy using differential
privacy [5], and we adopt (ε,δ)-differential privacy (DP) [6], which is defined as follows:
Definition 2. A mechanism M : D → R is (ε,δ)-differentially private if for any i ∈ d(t), t, any
two distinct ỹi(t,ei(t)), ỹ′i(t,e

′
i(t)), and for every subset of possible outputs S ⊆ R, Pr[M (D) ∈ S]≤

exp(ε)Pr[M (D\{ỹi(t,ei(t))}, ỹ′i(t,e′i(t))) ∈ S]+δ.

Suppose the learner will protect workers’ privacy (e.g., companies will keep customers’ data in
private), so contributing data to the leaner directly will not leak a particular worker’s privacy. The
privacy leakage occurs in two ways: (1) The learned regression model θ̃(T ), which is trained using
all data collected after T rounds. Suppose after learning the regression model θ̃(T ), this information
will be released for public usage or monitoring. This information contains each individual worker’s
private information. Note this is a one shot leak of privacy (published at the end of the training (step
T )). (2) The second ones are the indexes. Each worker i’s data will be utilized towards calculating
other workers’ indexes I j(t), j 6= i, as well as his own Ii(t), which will be published.7 Note this type

7It is debatable whether the indexes should be published or not. But revealing decisions on worker selection
will also reveal information on the indexes. We consider the more direct scenario, where they are published.
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of leakage occurs at each step. To simplify the matter, instead of I j(t), we can focus on the privacy
losses in S j(t), as I j(t) is a function of S j(t) and ni(t), and we prove the following:

Lemma 2. At any time t, ∀i, ni(t) can be written as a function of {S j(n),n < t} j.

Preserving privacy in θ̃(T ) To protect privacy in θ̃(T ), following standard method, we add a
Laplacian noise vector vθ to it [6]: θ̃p(T ) = θ̃(T )+vθ, where Pr(vθ) ∝ exp(−εθ||vθ||2). εθ > 0 is
a parameter controlling the noise level.

Lemma 3. Set εθ = 2
√

T , the output θ̃p(T ) of SR-UCB for linear regression preserves
(O
(
T−1/2

)
,exp(−O

(
T
)
))-DP. Further w.p. ≥ 1−1/T 2, ||θ̃p(T )− θ̃(T )||2 = ||vθ||2 ≤ logT/

√
T .

Preserving privacy in {Ii(t)}i,t : a continual privacy preserving model For indexes {Ii(t)}i it
is tempting to add vi(t) to each index (and for selection) Ii(t) := Ii(t)+ vi(t), where again vi(t)
is a zero-mean Laplacian noise. However with releasing {Ii(t)}iat each step, we will be releasing
a noisy version of each ỹi(n,ei(n)), i ∈ d(n),∀n < t. Then via composition theory in differential
privacy [12], we know the preserved privacy level will grow in time t, unless we add significant
noise on each stage – but this will completely destroy the informativeness of our index policy.

We borrow the partial sum idea from differential privacy results on continual observations [3]. The
idea is when releasing continual data, instead of exerting noise at any step, the current to-be-released
data will be decoupled into sum of partial sums, and we only add noise to each partial sums –
hopefully the noisy version of the partial sums can be reused repeatedly. In order to implement this
idea, first we need to transform the information to be published into partial sums. For each worker i
and Si(t), if we adopt online update in Eqn. (6.1), it is fairly clear Sonline

i (t) can be written down as
sum of partial sums of terms invoking ỹi(n,ei(n)). The basic idea works as follows: Write Sonline

i (t)
as the a summation: ∑

t−1
n=1 dS(n)/ni(t). Write down t as a binary string and flip its rightmost bit to 0:

this gives q(t). Take the sum from q(t)+ 1 to t: ∑
t
n=q(t)+1 dS(n) as one partial sum. Repeat above

for q(t), to get q(q(t)), and the second partial sum ∑
q(t)
n=q(q(t))+1 dS(n), until we reach q(·) = 0. So

Sonline
i (t) =

1
ni(t)

( t

∑
n=q(t)+1

dS(n)+
q(t)

∑
n=q(q(t))+1

dS(n)+ ...+
0

∑
n=0

dS(n)
)
.

For each partial sum above we add a Laplacian noise vS with distribution Pr(vS) ∝ e−ε|vS|. With this
we can hope to bound the number of total noise terms (≤ dlog te with t steps), as well as the number
of appearance of each private data in the partial sums (≤ dlog te with t terms [3]). It is however not
as clear as how to make such a decouple (into partial sums) for {θ̃online

− j (n)}t
n=1 (in Sonline

j (t)), which
contains information of ỹi(n,ei(n)). In our solution, change θ̃online

− j (t) to θ̃online
− j (t) :=∑

t
n=1 θ̃− j(n)/t,

where θ̃− j(n) is the regression model we estimated using all data from worker j 6= i up to time n.
With this we apply the partial sum idea to ∑

t
n=1 θ̃− j(n) (add Pr(v

θ̃
) ∝ e−ε||v

θ̃
||2 to each partial sum).

The rest we need to show is with above two noise exertion procedures, our index policy SR-UCB
will not lose its value in incentivizing. We show in order to prove similar convergence results, we
need to update SR-UCB by changing the index into the following format:

Ii(t) = Ŝonline
i (t)+ c(log3 t log3 T )/

√
ni(t), τ(t) = O

(
(log3 t log3 T )/

√
t
)
,

where Ŝonline
i (t) denotes the noisy version of Sonline

i (t) with added noises ( vS,vθ̃
etc). The change of

bias is mainly to incorporate the increased uncertainty level (due to added privacy preserving noise).
Denote this mechanism as PSR-UCB, we have:

Theorem 3. Set ε := 1/ log3 T for added noises (both vS,vθ̃
), PSR-UCB preserves

(O
(
log−1 T

)
,O
(
log−1 T

)
)-DP for linear regression.

With homogeneous workers, we similarly can prove exerting effort e∗ (optimal effort level) is
O
(
log6 T/

√
T
)
-BNE. We do see in order to protect privacy in the bandit setting, we loss in the

approximation term of BNE (less incentive to provide).
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