Thermodynamics: The First Law
Atkins, Chapter 2

- **Open System**: Mass, heat, energy flow freely
- **Closed System**: Heat, energy flow freely
- **Isolated System**: No mass, heat, or energy flow

$q < 0$ Exothermic

$q > 0$ Endothermic
Internal Energy U

The sum of all of the kinetic and potential energy contributions to the energy of all the atoms, ions, molecules, etc. in the system.

Internal Energy U:

He gas
- Translational Energy

Methanol Gas
- Rotational Energy
- Vibrational Energy
- Bond Energy
- Nuclear Energy
- Electronic Energy
- Bond Energy

Nils Walter: Chem 260
The First Law of Thermodynamics: Internal Energy is Conserved

- The change in internal energy (ΔU) of a closed system is equal to the sum of the heat (q) added to it and the work (w) done upon it.
- The internal energy of an isolated system is constant.

$$\Delta U = q + w \quad \text{For a Closed System}$$

$$\Delta U = 0 \quad \text{For an Isolated System}$$

Internal energy U is a state function \Rightarrow Quantity is independent of path.

Volume, Temperature, Pressure, and Quantity are other examples of state functions.
Internal Energy can be exchanged with the surroundings as heat or work

\[\Delta U = q + w \]

Closed system, constant volume

Closed system, expansion against external pressure

Heat is stored as internal energy and released as volume-pressure work [J]

\[\Delta U = q + w = q - p_{ex} \Delta V \]

\(w = -Fdx = -p \Delta V \)

\(w = 0; \text{ no work done} \)

\(\Rightarrow \Delta U = q_v \)
Internal Energy and Enthalpy

Enthalpy definition:

\[H = U + pV \]

Most convenient for processes at constant pressure:
- Cooking dinner
- Drying the laundry
- Digesting dinner
- Synthesizing a compound in lab

At constant pressure, if only \(pV \) work is done:

\[
\Delta U = q + w = q_p - \int_{V_1}^{V_2} p \, dV
\]

\[
= q_p - p \int_{V_1}^{V_2} dV = q_p - p(V_2 - V_1) = q_p - p\Delta V
\]

\(p \) independent of \(V \)

\[
\Delta H = \Delta U + p\Delta V = q_p
\]

Enthalpy is the heat transferred in a process at constant pressure (assuming only \(pV \) work)
Enthalpy

- **Open System**: Mass, heat, energy flow freely
- **Closed System**: Heat, energy flow freely
- **Isolated System**: No mass, heat, or energy flow

Heating processes:
- **Exothermic**: $\Delta H < 0$
- **Endothermic**: $\Delta H > 0$
Enthalpy and Internal Energy are State Functions

We only need be concerned with the change in enthalpy (ΔH) or change in internal energy (ΔU), not the path of how we got there

\Rightarrow We can arbitrarily assign $H = 0$ for each element in its standard state = state of aggregation at $p = 1$ bar, $T = 298.15$ K

Standard Formation Reaction: Formation of one mole of a substance from the elements in their standard states.

- $\Delta_f H =$ standard molar enthalpies of formation

\[
\begin{align*}
\text{CS}_2 (l) & \quad +87.86 \text{ kJ/mol} \\
\text{C}_{(\text{graphite})} + 2 \text{ S}_{(s, \text{rhombic})} & \rightarrow \text{CS}_2(l) \\
\text{C}_{(\text{graphite})} & - \text{C}_{(\text{graphite})} \quad - \quad 0 \\
\text{O}_2 (g) & \quad \text{S}_{(s, \text{rhombic})} \\
\text{CO} (g) & -110.52 \text{ kJ/mol} \\
\text{C}_{(\text{graphite})} + \frac{1}{2} \text{O}_2 (g) & \rightarrow \text{CO} (g) \\
\text{CO}_2 (g) & -393.51 \text{ kJ/mol} \\
\text{C}_{(\text{graphite})} + \text{O}_2 (g) & \rightarrow \text{CO}_2(g)
\end{align*}
\]