Definition:

Internal Energy: $U \Rightarrow \text{Sum Total Energy}$

The sum of all of the kinetic and potential energy contributions to the energy of all the atoms, ions, molecules, etc. in the system.
First Law of Thermodynamics: **Conservation of Energy**

\[\Delta U = q + w \quad \text{For a Closed System} \]

\[\Delta U = 0 \quad \text{For an Isolated System} \]

The change in internal energy (\(\Delta U \)) of a **closed system** is equal to the sum of the heat (\(q \)) added to it and the work (\(w \)) done upon it, the internal energy of an isolated system is constant.

Internal energy is a **state** function.
- Quantity is independent of path.

Volume, Temperature, Pressure, and quantity are other examples of **state** functions.
First Law of Thermodynamics: (continued)

\[\Delta U = q + w \]

Closed system
Constant volume

\[w = -P \Delta V = 0 \] No work done

Heat energy is stored as internal energy and released as work.

Closed system
Expansion against external pressure

\[\Delta U = q + w = q - P_{ex} \Delta V \]
It is frequently most convenient to carry out a process at constant pressure.

- Cooking dinner
- Drying the laundry
- Digesting dinner
- Synthesizing a compound in lab

At constant pressure if only PV work is done:

\[\Delta U = q + w = q_p - \int_{v_1}^{v_2} P \, dV \]
\[= q_p - P \int_{v_1}^{v_2} dV = q_p - P \Delta V \]

\[\Delta H = \Delta U + P \Delta V = q_p \]

Enthalpy is the heat transferred in a process at constant pressure (assuming only PV work).
Equilibrium Thermodynamics

- Open System
 Mass, heat, energy flow freely
- Closed System
 Heat, energy flow freely
- Isolated System
 No mass, heat, or energy flow

Exothermic

\[q < 0 \]
\[\Delta H < 0 \]

Endothermic

\[q > 0 \]
\[\Delta H > 0 \]
Enthalpy and Internal Energy are **State Quantities**:

∴ We need only be concerned with change in enthalpy (ΔH) or change in internal energy (ΔU) in any process.

Arbitrarily assign $H=0$ for each element in its **Standard State**: Most stable state of aggregation at $P = 1$ atm, $T = 298$ K.

Standard Formation Reaction: Formation of one mole of a substance from the elements in their standard states.

\[
\begin{align*}
\text{CS}_2(\text{l}) & \quad +87.86 \text{ kJ/mol} \\
\text{C}(\text{graphite}) & \quad \text{C}(\text{graphite}) \\
\text{O}_2(\text{g}) & \quad \text{O}_2(\text{g}) \\
\text{S}(\text{s, rhombic}) & \quad \text{S}(\text{s, rhombic}) \\
\text{CO}(\text{g}) & \quad -110.52 \text{ kJ/mol} \\
\text{CO}_2(\text{g}) & \quad -393.51 \text{ kJ/mol} \\
\end{align*}
\]

\[
\begin{align*}
\text{CS}_2(\text{l}) & \quad \rightarrow \quad \text{C}(\text{graphite}) + 2 \text{ S}(\text{s, rhombic}) \\
\text{CO}_2(\text{g}) & \quad \rightarrow \quad \text{C}(\text{graphite}) + \frac{1}{2} \text{ O}_2(\text{g}) \\
\text{CO}_2(\text{g}) & \quad \rightarrow \quad \text{C}(\text{graphite}) + \text{ O}_2(\text{g})
\end{align*}
\]
Hess’s Law: $\Delta H = 0$ for a cyclic process.

$$\Delta H_{AB} + \Delta H_{BC} + \Delta H_{CA} = 0$$

$$\Delta H_R = \sum \Delta H_f^{\ominus (Prod.)} - \sum \Delta H_f^{\ominus (React.)}$$
Heat: Heat always flows from the “hot” object to the “cool” object.

- Initially $T_1 > T_2$
- Heat flow will continue until $T_1 = T_2$

Temperature change ($\Delta T = T_f - T_i$) is proportional to the heat (q) received.

$$q \propto \Delta T$$

$$q = C \Delta T$$

Proportionality constant is the heat capacity, C.

If heat flows out of the system:

$$\Delta T = T_f - T_i < 0$$

$$q < 0$$

If heat flows into the system:

$$\Delta T = T_f - T_i > 0$$

$$q > 0$$