CHAPTER 12
MOLECULAR SYMMETRY

In many cases, the symmetry of a molecule provides a great deal of information about its quantum states, even without a detailed solution of the Schrödinger equation. A geometrical transformation which turns a molecule into an indistinguishable copy of itself is called a *symmetry operation*. A symmetry operation can consist of a rotation about an axis, a reflection in a plane, an inversion through a point, or some combination of these.

The Ammonia Molecule

We shall introduce the concepts of symmetry and group theory by considering a concrete example—the ammonia molecule NH$_3$. In any symmetry operation on NH$_3$, the nitrogen atom remains fixed but the hydrogen atoms can be permuted in $3! = 6$ different ways. The axis of the molecule is called a C$_3$ axis, since the molecule can be rotated about it into 3 equivalent orientations, 120° apart. More generally, a C$_n$ axis has n equivalent orientations, separated by $2\pi/n$ radians. The axis of highest symmetry in a molecule is called the *principal axis*. Three mirror planes, designated $\sigma_1, \sigma_2, \sigma_3$, run through the principal axis in ammonia. These are designated as σ_v or *vertical* planes of symmetry. Ammonia belongs to the symmetry group designated C$_{3v}$, characterized by a three-fold axis with three vertical planes of symmetry.

Let us designate the orientation of the three hydrogen atoms in Fig. 1 as $\{1, 2, 3\}$, reading in clockwise order from the bottom. A counterclockwise rotation by 120°, designated
Figure 1. Two views of the ammonia molecule.

by the operator C_3, produces the orientation $\{2, 3, 1\}$. A second counterclockwise rotation, designated C_3^2, produces gives $\{3, 1, 2\}$. Note that two successive counterclockwise rotations by 120° is equivalent to one clockwise rotation by 120°, so the last operation could also be designated C_3^{-1}. The three reflection operations $\sigma_1, \sigma_2, \sigma_3$ applied to the original configuration $\{1, 2, 3\}$ produces $\{1, 3, 2\}, \{3, 2, 1\}$ and $\{2, 1, 3\}$, respectively. Finally, we must include the identity operation, designated E, which leaves an orientation unchanged. The effects of the six possible operations of the symmetry group C_{3v} can be summarized as follows:

\[
E \{1, 2, 3\} = \{1, 2, 3\} \quad C_3 \{1, 2, 3\} = \{2, 3, 1\} \\
C_3^2 \{1, 2, 3\} = \{3, 1, 2\} \quad \sigma_1 \{1, 2, 3\} = \{1, 3, 2\} \\
\sigma_2 \{1, 2, 3\} = \{3, 2, 1\} \quad \sigma_3 \{1, 2, 3\} = \{2, 1, 3\}
\]

We have thus accounted for all 6 possible permutations of the three hydrogen atoms.
The successive application of two symmetry operations is equivalent to some single symmetry operation. For example, applying C_3, then σ_1 to our starting orientation, we have

$$\sigma_1 C_3 \{1, 2, 3\} = \sigma_1 \{2, 3, 1\} = \{2, 1, 3\}$$

But this is equivalent to the single operation σ_3. This can be represented as an algebraic relation among symmetry operators

$$\sigma_1 C_3 = \sigma_3$$

Note that successive operations are applied in the order right to left when represented algebraically. For the same two operations in reversed order, we find

$$C_3 \sigma_1 \{1, 2, 3\} = C_3 \{1, 3, 2\} = \{3, 2, 1\} = \sigma_2 \{1, 2, 3\}$$

Thus symmetry operations do not, in general commute

$$AB \not\equiv BA$$

although they may commute, for example, C_3 and C_3^2.

The algebra of the group C_{3v} can be summarized by the following multiplication table.

<table>
<thead>
<tr>
<th>2nd</th>
<th>1st</th>
<th>E</th>
<th>C_3</th>
<th>C_3^2</th>
<th>σ_1</th>
<th>σ_2</th>
<th>σ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>C_3</td>
<td>C_3^2</td>
<td>σ_1</td>
<td>σ_2</td>
<td>σ_3</td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td>C_3</td>
<td>C_3^2</td>
<td>E</td>
<td>σ_3</td>
<td>σ_1</td>
<td>σ_2</td>
<td></td>
</tr>
<tr>
<td>C_3^2</td>
<td>C_3^2</td>
<td>E</td>
<td>C_3</td>
<td>σ_2</td>
<td>σ_3</td>
<td>σ_1</td>
<td></td>
</tr>
<tr>
<td>σ_1</td>
<td>σ_1</td>
<td>σ_2</td>
<td>σ_3</td>
<td>E</td>
<td>C_3</td>
<td>C_3^2</td>
<td></td>
</tr>
<tr>
<td>σ_2</td>
<td>σ_2</td>
<td>σ_3</td>
<td>σ_1</td>
<td>C_3^2</td>
<td>E</td>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>σ_3</td>
<td>σ_3</td>
<td>σ_1</td>
<td>σ_2</td>
<td>C_3</td>
<td>C_3^2</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Notice that each operation occurs once and only once in each row and each column.
Group Theory

In mathematics, a *group* is defined as a set of \(g \) elements \(\mathcal{G} \equiv \{G_1, G_2 \ldots G_h\} \) together with a rule for combination of elements, which we usually refer to as a *product*. The elements must fulfill the following four conditions.

(i) The product of any two elements of the group is another element of the group. That is \(G_i G_j = G_k \) with \(G_k \in \mathcal{G} \).

(ii) Group multiplication obeys an associative law, \(G_i (G_j G_k) = (G_i G_j) G_k \equiv G_i G_j G_k \).

(iii) There exists an *identity element* \(E \) such that \(E G_i = G_i E = G_i \) for all \(i \).

(iv) Every element \(G_i \) has a unique inverse \(G_i^{-1} \), such that \(G_i G_i^{-1} = G_i^{-1} G_i = E \) with \(G_i^{-1} \in \mathcal{G} \).

The number of elements \(h \) is called the *order* of the group. Thus \(C_{3v} \) is a group of order 6.

A set of quantities which obeys the group multiplication table is called a *representation* of the group. Because of the possible noncommutativity of group elements [cf. Eq (1)], simple numbers are not always adequate to represent groups; we must often use matrices. The group \(C_{3v} \) has three *irreducible representations*, or IR’s, which cannot be broken down into simpler representations. A trivial, but nonetheless important, representation of any group is the *totally symmetric representation*, in which each group element is represented by 1. The multiplication table then simply reiterates that \(1 \times 1 = 1 \). For \(C_{3v} \) this is called the \(A_1 \) representation:

\[
A_1 : E = 1, \ C_3 = 1, \ C_3^2 = 1, \ \sigma_1 = 1, \ \sigma_2 = 1, \ \sigma_3 = 1
\]

(2)

A slightly less trivial representation is \(A_2 \):

\[
A_2 : E = 1, \ C_3 = 1, \ C_3^2 = 1, \ \sigma_1 = -1, \ \sigma_2 = -1, \ \sigma_3 = -1
\]

(3)
Much more exciting is the E representation, which requires 2×2 matrices:

\[
E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad C_3 = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix} \\
C_3^2 = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix} \quad \sigma_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \\
\sigma_2 = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}
\]

(4)

The operations C_3 and C_3^2 are said to belong to the same class since they perform the same geometric function, but for different orientations in space. Analogously, σ_1, σ_2 and σ_3 are obviously in the same class. E is in a class by itself. The class structure of the group is designated by \{ $E, 2C_3, 3\sigma_v$ \}. We state without proof that the number of irreducible representations of a group is equal to the number of classes. Another important theorem states that the sum of the squares of the dimensionalities of the irreducible representations of a group adds up to the order of the group. Thus, for C_{3v}, we find $1^2 + 1^2 + 2^2 = 6$.

The trace or character of a matrix is defined as the sum of the elements along the main diagonal:

\[
\chi(M) \equiv \sum_k M_{kk}
\]

(5)

For many purposes, it suffices to know just the characters of a matrix representation of a group, rather than the complete
matrices. For example, the characters for the E representation of C_{3v} in Eq (4) are given by

$$
\chi(E) = 2, \quad \chi(C_3) = -1, \quad \chi(C_3^2) = -1,
\chi(\sigma_1) = 0, \quad \chi(\sigma_2) = 0, \quad \chi(\sigma_3) = 0
$$

(6)

It is true in general that the characters for all operations in the same class are equal. Thus Eq (6) can be abbreviated to

$$
\chi(E) = 2, \quad \chi(C_3) = -1, \quad \chi(\sigma_v) = 0
$$

(7)

For one-dimensional representations, such as A_1 and A_2, the characters are equal to the matrices themselves, so Eqs (2) and (3) can be read as a table of characters.

The essential information about a symmetry group is summarized in its character table. We display here the character table for C_{3v}

<table>
<thead>
<tr>
<th>C_{3v}</th>
<th>E</th>
<th>$2C_3$</th>
<th>$3\sigma_v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z</td>
<td>$z^2, x^2 + y^2$</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x, y)</td>
<td>$(xy, x^2 - y^2), (xz, yz)$</td>
</tr>
</tbody>
</table>

The last two columns show how the cartesian coordinates x, y, z and their products transform under the operations of the group.

Group Theory and Quantum Mechanics

When a molecule has the symmetry of a group \mathcal{G}, this means that each member of the group commutes with the molecular Hamiltonian

$$
[\hat{G}_i, \hat{H}] = 0 \quad i = 1 \ldots h
$$

(8)
where we now explicitly designate the group elements G_i as operators on wavefunctions. As was shown in Chap. 4, commuting operators can have simultaneous eigenfunctions. A representation of the group of dimension d means that there must exist a set of d degenerate eigenfunctions of \hat{H} that transform among themselves in accord with the corresponding matrix representation. For example, if the eigenvalue E_n is d-fold degenerate, the commutation conditions (2) imply that, for $i = 1 \ldots h$,

$$\hat{G}_i \hat{H} \psi_{nk} = \hat{H} \hat{G}_i \psi_{nk} = E_n \hat{G}_i \psi_{nk} \quad \text{for} \quad k = 1 \ldots d \quad (9)$$

Thus each $\hat{G}_i \psi_{nk}$ is also an eigenfunction of \hat{H} with the same eigenvalue E_n, and must therefore be represented as a linear combination of the eigenfunctions ψ_{nk}. More precisely, the eigenfunctions transform among themselves according to

$$\hat{G}_i \psi_{nk} = \sum_{m=1}^{d} \{D(G_i)_{km}\} \psi_{nm} \quad (10)$$

where $D(G_i)_{km}$ means the $\{k, m\}$ element of the matrix representing the operator \hat{G}_i.

The character of the identity operation E immediately shows the degeneracy of the eigenvalues of that symmetry. The C_{3v} character table reveals that NH$_3$, and other molecules of the same symmetry, can have only nondegenerate and two-fold degenerate energy levels. The following notation for symmetry species was introduced by Mulliken:

(i) One dimensional representations are designated either A or B. Those symmetric wrt rotation by $2\pi/n$ about the C_n
principal axis are labelled A, while those antisymmetric are labelled B.

(ii) Two dimensional representations are designated E; 3, 4 and 5 dimensional representations are designated T, F and G, respectively. These latter cases occur only in groups of high symmetry: cubic, octahedral and icosohedral.

(iii) In groups with a center of inversion, the subscripts \(g \) and \(u \) indicate even and odd parity, respectively.

(iv) Subscripts 1 and 2 indicate symmetry and antisymmetry, respectively, wrt a \(C_2 \) axis perpendicular to \(C_n \), or to a \(\sigma_v \) plane.

(v) Primes and double primes indicate symmetry and antisymmetry to a \(\sigma_h \) plane.

For individual orbitals, the lower case analogs of the symmetry designations are used. For example, MO’s in ammonia are classified \(a_1, a_2 \) or \(e \).

For ammonia and other \(C_{3v} \) molecules, there exist three species of eigenfunctions. Those belonging to the classification \(A_1 \) are transformed into themselves by all symmetry operations of the group. The 1s, 2s and \(2p_z \) AO’s on nitrogen are in this category. The \(z \)-axis is taken as the 3-fold axis. There are no low-lying orbitals belonging to \(A_2 \). The nitrogen \(2p_x \) and \(2p_y \) AO’s form a two-dimensional representation of the group \(C_{3v} \). That is to say, any of the six operations of the group transforms either one of these AO’s into a linear combination of the two, with coefficients given by the matrices (4). The three hydrogen 1s orbitals transform like a \(3 \times 3 \) representation of the group. If we represent the hydrogens by a column vector \(\{H_1, H_2, H_3\} \),
then the six group operations generate the following algebra

\[E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad C_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \]

\[C_3^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \]

\[\sigma_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (11) \]

Let us denote this representation by \(\Gamma \). It can be shown that \(\Gamma \) is a reducible representation, meaning that by some unitary transformation the \(3 \times 3 \) matrices can be factorized into block-diagonal form with \(2 \times 2 \) plus \(1 \times 1 \) submatrices. The reducibility of \(\Gamma \) can be deduced from the character table. The characters of the matrices (11) are

\[\Gamma : \quad \chi(E) = 3, \quad \chi(C_3) = 0, \quad \chi(\sigma_v) = 1 \quad (12) \]

The character of each of these permutation operations is equal to the number of H atoms left untouched: 3 for the identity, 1 for a reflection and 0 for a rotation. The characters of \(\Gamma \) are seen to equal the sum of the characters of \(A_1 \) plus \(E \). This reducibility relation is expressed by writing

\[\Gamma = A_1 \oplus E \quad (13) \]

The three H atom 1s functions can be combined into LCAO functions which transform according to the IR’s of the group. Clearly the sum

\[\psi = \psi_{1s}(1) + \psi_{1s}(2) + \psi_{1s}(3) \quad (14) \]
transforms like A_1. The two remaining linear combinations which transform like E must be orthogonal to (14) and to one another. One possible choice is

$$\psi' = \psi_{1s}(2) - \psi_{1s}(3), \quad \psi'' = 2\psi_{1s}(1) - \psi_{1s}(2) - \psi_{1s}(3) \quad (15)$$

Now (14) can be combined with the N $1s$, $2s$ and $2p_z$ to form MO’s of A_1 symmetry, while (15) can be combined with the N $2p_x$ and $2p_y$ to form MO’s of E symmetry. Note that no hybridization of AO’s is predetermined, it emerges automatically in the results of computation.