ChE 344
Chemical Reaction Engineering
Winter 1999
Exam I
Part 2 (20%)

Open Book, Notes, and Disk
Closed Web

Name_______________________________

I have neither given nor received aid on this examination nor have I spent more than one hour working on Part 2 of this exam.

Signed__

Start Time____________________

Finish Time__________________
The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

\[A \xrightarrow{k_{1C}} B + C \quad r'_{1C} = k_{1C} \left[C_A - \frac{C_B C_C}{K_{1C}} \right] \]

\[A \rightarrow D \quad r_{2D} = k_{2D} C_A \]

\[2C + D \rightarrow 2E \quad r'_{3E} = k_{3E} C_C^2 C_D \]

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at \(W = \) 9 kg

(b) the concentration of C is a maximum at \(W = \) 43

(c) Explain why the curves look the way they do.

(d) Vary \(k_{1C} \) (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient \(k_B = 1.0 \text{ dm}^3 / \text{kg cat\cdot min} \)

\(k_{1C} = 2 \text{ dm}^3 / \text{kg cat\cdot min} \)
\(K_{1C} = 0.2 \text{ mol/dm}^3 \)
\(k_{2D} = 0.4 \text{ dm}^3 / \text{kg cat\cdot min} \)
\(k_{3E} = 5 \text{ dm}^9 / \text{mol}^2 \cdot \text{kg cat\cdot min} \)
\(W_f = 100 \text{ kg} \)
Equations:
\[\frac{d(F_b)}{d(w)} = r_{1c} - k_b C_b \]
\[\frac{d(F_a)}{d(w)} = -r_{1c} - r_{2d} \]
\[\frac{d(F_c)}{d(w)} = r_{1c} - r_{3e} \]
\[\frac{d(F_d)}{d(w)} = r_{2d} - 0.5 r_{3e} \]
\[\frac{d(F_e)}{d(w)} = r_{3e} \]
\[k_b = 1 \]
\[k_{1c} = 2 \]
\[K_{1c} = 0.2 \]
\[k_{2d} = 0.4 \]
\[k_{3e} = 5 \]
\[F_t = F_a + F_b + F_c + F_d + F_e \]
\[C_{ao} = 0.6 \]
\[C_b = C_{ao} F_b / F_t \]
\[C_a = C_{ao} F_a / F_t \]
\[C_c = C_{ao} F_c / F_t \]
\[C_d = C_{ao} F_d / F_t \]
\[r_{2d} = k_{2d} C_a \]
\[r_{3e} = k_{3e} C_c^{**2} \]
\[r_{1c} = k_{1c} (C_a - C_b C_c / K_{1c}) \]
\[w_0 = 0, \quad w_f = 100 \]

Initial values:
\[0 \]
\[10 \]
\[0 \]
\[0 \]
\[0 \]
\[k_{1c} \]
\[K_{1c} \]
\[k_{2d} \]
\[k_{3e} \]
\[F_t \]
\[C_{ao} \]
\[C_b \]
\[C_a \]
\[C_c \]
\[C_d \]
\[r_{2d} \]
\[r_{3e} \]
\[r_{1c} \]
\[w_0 \]
\[w_f \]

Diagram: Graph showing the relationship between Ca, Cb, and Cc over a range of w values.
<table>
<thead>
<tr>
<th>w</th>
<th>Ca</th>
<th>Cb</th>
<th>Cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.47542677</td>
<td>0.055665523</td>
<td>0.057312207</td>
</tr>
<tr>
<td>2</td>
<td>0.3957166</td>
<td>0.089633734</td>
<td>0.094926815</td>
</tr>
<tr>
<td>3</td>
<td>0.34130399</td>
<td>0.11132724</td>
<td>0.12127758</td>
</tr>
<tr>
<td>4</td>
<td>0.30234209</td>
<td>0.12549092</td>
<td>0.14067946</td>
</tr>
<tr>
<td>5</td>
<td>0.27342888</td>
<td>0.13473066</td>
<td>0.1555247</td>
</tr>
<tr>
<td>6</td>
<td>0.25141063</td>
<td>0.14057054</td>
<td>0.16721873</td>
</tr>
<tr>
<td>7</td>
<td>0.23424883</td>
<td>0.14399972</td>
<td>0.17667399</td>
</tr>
<tr>
<td>8</td>
<td>0.22058921</td>
<td>0.14567933</td>
<td>0.18449782</td>
</tr>
<tr>
<td>9</td>
<td>0.20952241</td>
<td>0.14605676</td>
<td>0.19109747</td>
</tr>
<tr>
<td>10</td>
<td>0.20039388</td>
<td>0.14545751</td>
<td>0.19676552</td>
</tr>
<tr>
<td>11</td>
<td>0.19274558</td>
<td>0.14411239</td>
<td>0.2017048</td>
</tr>
<tr>
<td>12</td>
<td>0.18620294</td>
<td>0.142213</td>
<td>0.20608209</td>
</tr>
<tr>
<td>13</td>
<td>0.18051593</td>
<td>0.13989007</td>
<td>0.2100599</td>
</tr>
<tr>
<td>14</td>
<td>0.17547977</td>
<td>0.13725259</td>
<td>0.21356561</td>
</tr>
<tr>
<td>15</td>
<td>0.17093754</td>
<td>0.13438588</td>
<td>0.21682896</td>
</tr>
</tbody>
</table>

Page 3

<table>
<thead>
<tr>
<th>w</th>
<th>Ca</th>
<th>Cb</th>
<th>Cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.11540527</td>
<td>0.082939372</td>
<td>0.24923824</td>
</tr>
<tr>
<td>33</td>
<td>0.11246995</td>
<td>0.080411562</td>
<td>0.25018771</td>
</tr>
<tr>
<td>34</td>
<td>0.10955929</td>
<td>0.077954689</td>
<td>0.25104033</td>
</tr>
<tr>
<td>35</td>
<td>0.10667407</td>
<td>0.075564162</td>
<td>0.25180175</td>
</tr>
<tr>
<td>36</td>
<td>0.10381858</td>
<td>0.073243848</td>
<td>0.25246582</td>
</tr>
<tr>
<td>37</td>
<td>0.10099316</td>
<td>0.070988078</td>
<td>0.25303952</td>
</tr>
<tr>
<td>38</td>
<td>0.098199861</td>
<td>0.068795593</td>
<td>0.25352379</td>
</tr>
<tr>
<td>39</td>
<td>0.095441974</td>
<td>0.066667214</td>
<td>0.2539166</td>
</tr>
<tr>
<td>40</td>
<td>0.092719153</td>
<td>0.064597554</td>
<td>0.25422487</td>
</tr>
<tr>
<td>41</td>
<td>0.09003593</td>
<td>0.062589436</td>
<td>0.25444382</td>
</tr>
<tr>
<td>42</td>
<td>0.087392152</td>
<td>0.060638394</td>
<td>0.25457928</td>
</tr>
<tr>
<td>43</td>
<td>0.084788515</td>
<td>0.058741887</td>
<td>0.25463452</td>
</tr>
<tr>
<td>44</td>
<td>0.082228183</td>
<td>0.056900712</td>
<td>0.25460796</td>
</tr>
<tr>
<td>45</td>
<td>0.079711463</td>
<td>0.055112089</td>
<td>0.25450344</td>
</tr>
<tr>
<td>46</td>
<td>0.07724071</td>
<td>0.053375881</td>
<td>0.25432101</td>
</tr>
<tr>
<td>47</td>
<td>0.074815671</td>
<td>0.051689129</td>
<td>0.25406506</td>
</tr>
</tbody>
</table>
The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

\[A \rightleftharpoons B + C \quad r'_{IC} = k_{1C} \left[C_A - \frac{C_B C_C}{K_{1C}} \right] \]

\[A \rightarrow D \quad r_{2D} = k_{2D} C_A \]

\[2C + D \rightarrow 2E \quad r'_{3E} = k_{3E} C_C^2 C_D \]

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at \(W = \) ____________

(b) the concentration of C is a maximum at \(W = \) ____________

(c) Explain why the curves look the way they do.

(d) Vary \(k_{IC} \) (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient \(k_B = 0.2 \text{ dm}^3 / \text{kg cat} \cdot \text{min} \)

\[k_{1C} = 2 \text{ dm}^3 / \text{kg cat} \cdot \text{min} \]

\[K_{1C} = 0.2 \text{ mol/dm}^3 \]

\[k_{2D} = 0.4 \text{ dm}^3 / \text{kg cat} \cdot \text{min} \]

\[k_{3E} = 5 \text{ dm}^9 / \text{mol}^2 \cdot \text{kg cat} \cdot \text{min} \]

\(W_f = 100 \text{ kg} \)
Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at \(W = \) _____________

(b) the concentration of C is a maximum at \(W = \) _____________

(c) Explain why the curves look the way they do.

(d) Vary \(k_{1C} \) (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient \(k_B = 5.0 \text{ dm}^3/\text{kg cat} \cdot \text{min} \)

\(k_{1C} = 2 \text{ dm}^3/\text{kg cat} \cdot \text{min} \)

\(K_{1C} = 0.2 \text{ mol/dm}^3 \)

\(k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min} \)

\(k_{3E} = 5 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min} \)

\(W_f = 100 \text{ kg} \)

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

\[A \underset{\Delta}{\longrightarrow} B + C \]

\[r'_{1C} = k_{1C} \left[\frac{C_A - \frac{C_B C_C}{K_{1C}}}{C_A - \frac{C_B C_C}{K_{1C}}} \right] \]
A \rightarrow D \quad \quad \quad r'_{2D} = k_{2D} C_A

2C + D \rightarrow 2E \quad \quad \quad r'_{3E} = k_{3E} C_C^2 C_D

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at \(W = \)_____________________

(b) the concentration of C is a maximum at \(W = \)_____________________

(c) Explain why the curves look the way they do.

(d) Vary \(k_{1C} \) (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient \(k_B = 1.0 \ \text{dm}^3/\text{kg \ cat} \cdot \text{min} \)
\(k_{1C} = 0.2 \ \text{dm}^3/\text{kg \ cat} \cdot \text{min} \)
\(K_{1C} = 0.2 \ \text{mol/dm}^3 \)
\(k_{2D} = 0.4 \ \text{dm}^3/\text{kg \ cat} \cdot \text{min} \)
\(k_{3E} = 5 \ \text{dm}^9/\text{mol}^2 \cdot \text{kg \ cat} \cdot \text{min} \)
\(W_f = 100 \ \text{kg} \)

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

\[
A \leftrightarrow B + C \quad r'_{1C} = k_{1C} \left[C_A - \frac{C_B C_C}{K_{1C}} \right]
\]

\[
A \rightarrow D \quad r'_{2D} = k_{2D} C_A
\]
2C + D → 2E \quad r'_{3E} = k_{3E} \ C_C^2 C_D

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at \(W = \)

(b) the concentration of C is a maximum at \(W = \)

(c) Explain why the curves look the way they do.

(d) Vary \(k_{1C} \) (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient \(k_B = 1.0 \ \text{dm}^3/\text{kg cat}\cdot\text{min} \)

\(k_{1C} = 10 \ \text{dm}^3/\text{kg cat}\cdot\text{min} \)

\(K_{1C} = 0.2 \ \text{mol/dm}^3 \)

\(k_{2D} = 0.4 \ \text{dm}^3/\text{kg cat}\cdot\text{min} \)

\(k_{3E} = 5 \ \text{dm}^9/\text{mol}^2\cdot\text{kg cat}\cdot\text{min} \)

\(W_f = 100 \ \text{kg} \)

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

\[
\begin{align*}
A & \overset{\text{B + C}}{\longrightarrow} \quad r'_{1C} = k_{1C} \left[C_A - \frac{C_B C_C}{K_{1C}} \right] \\
A & \longrightarrow D \quad r'_{2D} = k_{2D} C_A \\
2C + D & \longrightarrow 2E \quad r'_{3E} = k_{3E} C_C^2 C_D
\end{align*}
\]
Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at $W =$ ______________

(b) the concentration of C is a maximum at $W =$ ______________

(c) Explain why the curves look the way they do.

(d) Vary k_{1C} (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 1.0 \text{ dm}^3 / \text{kg cat} \cdot \text{min}$

$k_{1C} = 2 \text{ dm}^3 / \text{kg cat} \cdot \text{min}$

$K_{1C} = 0.2 \text{ mol/dm}^3$

$k_{2D} = 0.4 \text{ dm}^3 / \text{kg cat} \cdot \text{min}$

$k_{3E} = 20 \text{ dm}^9 / \text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$

$W_f = 100 \text{ kg}$

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

\[
\begin{align*}
A & \rightleftharpoons B + C \\
A & \rightarrow D \\
2C + D & \rightarrow 2E
\end{align*}
\]

\[
\begin{align*}
r'_{1C} &= k_{1C} \left[C_A - \frac{C_B C_C}{K_{1C}} \right] \\
r'_{2D} &= k_{2D} C_A \\
r'_{3E} &= k_{3E} C_C^2 C_D
\end{align*}
\]

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the
(a) the concentration of B is a maximum at \(W = \) __________

(b) the concentration of C is a maximum at \(W = \) __________

(c) Explain why the curves look the way they do.

(d) Vary \(k_1 \) (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient \(k_B = 1.0 \text{ dm}^3/\text{kg cat}\text{•min} \)

\(k_1 \) = 2 dm\(^3\)/kg cat\text{•min}

\(K_1 = 0.2 \text{ mol/dm}^3 \)

\(k_2 = 0.4 \text{ dm}^3/\text{kg cat}\text{•min} \)

\(k_3 = 10 \text{ dm}^9/\text{mol}^2\text{•kg cat}\text{•min} \)

\(W_f = 100 \text{ kg} \)

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

\[\begin{align*}
A &\longrightarrow B + C \\
A &\longrightarrow D \\
2C + D &\longrightarrow 2E
\end{align*} \]

\[\begin{align*}
r_1' &= k_1 [C_A - \frac{C_B C_C}{K_1}] \\
r_2 &= k_2 D_A \\
r_3' &= k_3 C_C^2 C_D
\end{align*} \]

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at \(W = \) __________

(b) the concentration of C is a maximum at \(W = \) __________
(c) Explain why the curves look the way they do.

(d) Vary k_{1C} (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 15 \text{ dm}^3/\text{kg cat}\cdot\text{min}$

- $k_{1C} = 2 \text{ dm}^3/\text{kg cat}\cdot\text{min}$
- $K_{1C} = 0.2 \text{ mol/dm}^3$
- $k_{2D} = 0.4 \text{ dm}^3/\text{kg cat}\cdot\text{min}$
- $k_{3E} = 5 \text{ dm}^9/\text{mol}^2\cdot\text{kg cat}\cdot\text{min}$
- $W_f = 100 \text{ kg}$

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

$$
A \xrightarrow{r_{1C}} B + C \quad r'_{1C} = k_{1C} \left[C_A - \frac{C_B C_C}{K_{1C}} \right]
$$

$$
A \rightarrow D \quad r'_{2D} = k_{2D} C_A
$$

$$
2C + D \rightarrow 2E \quad r'_{3E} = k_{3E} C_C^2 C_D
$$

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at \(W = \) ________________

(b) the concentration of C is a maximum at \(W = \) ________________

(c) Explain why the curves look the way they do.
(d) Vary \(k_{1C} \) (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient \(k_B = 1.0 \, \text{dm}^3/\text{kg} \cdot \text{cat} \cdot \text{min} \)

\[k_{1C} = 2 \, \text{dm}^3/\text{kg} \cdot \text{cat} \cdot \text{min} \]

\[K_{1C} = 0.2 \, \text{mol/dm}^3 \]

\[k_{2D} = 0.8 \, \text{dm}^3/\text{kg} \cdot \text{cat} \cdot \text{min} \]

\[k_{3E} = 5 \, \text{dm}^9/\text{mol}^2 \cdot \text{kg} \cdot \text{cat} \cdot \text{min} \]

\[W_f = 100 \, \text{kg} \]

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

\[\text{A} \rightleftharpoons \text{B} + \text{C} \quad \quad \dot{r}_{1C} = k_{1C} \left[C_A - \frac{C_BC_C}{K_{1C}} \right] \]

\[\text{A} \rightarrow \text{D} \quad \quad \dot{r}_{2D} = k_{2D} C_A \]

\[2\text{C} + \text{D} \rightarrow 2\text{E} \quad \quad \dot{r}_{3E} = k_{3E} \, C_C^2 C_D \]

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at \(W = \)

(b) the concentration of C is a maximum at \(W = \)

(c) Explain why the curves look the way they do.

(d) Vary \(k_{1C} \) (.1 to 1000) and write a paragraph describing what you observe. Explain whether or not what you observe is reasonable.
Additional Information

Overall mass transfer coefficient $k_B = 1.0 \text{ dm}^3 / \text{kg cat}\cdot\text{min}$

$k_{1C} = 2 \text{ dm}^3 / \text{kg cat}\cdot\text{min}$
$K_{1C} = 0.2 \text{ mol/dm}^3$
$k_{2D} = 2 \text{ dm}^3 / \text{kg cat}\cdot\text{min}$
$k_{3E} = 5 \text{ dm}^9 / \text{mol}^2 \cdot \text{kg cat}\cdot\text{min}$
$W_f = 100 \text{ kg}$