Mirror fields of view (FOV) of 48 men and women were measured in their own pickup trucks, minivans, and sport utility vehicles using methods previously applied to measuring mirror fields of view in passenger cars. A manual pole-sighting method was supplemented by calculations from three-dimensional vehicle data. A coordinate measurement machine was used to record the mirror orientations and driver eye locations.

Mirror aim did not differ significantly by vehicle type or driver gender, except that the vertical FOV in the left mirror was greater in trucks than in SUVs and minivans, due to larger mirrors. The mean horizontal FOV widths were 12.6, 19.6, and 20.2 degrees for the left (driver-side), center, and right mirrors, respectively. On average, drivers could see 12.1 degrees outboard on the left and 17.2 degrees outboard on the right. The FOV in the left mirror did not differ significantly from the FOV measured in a previous study of passenger cars. The center mirror FOV was smaller and included less of the area to the right of the vehicle than in passenger cars. Right-mirror FOV was similar to passenger cars, except that the outer edge of the horizontal FOV averaged 17.2 degrees, compared with 19.8 degrees in passenger cars. The differences in FOV are probably attributable to differences in vehicle and mirror geometry rather than differences in driver aiming behavior.

Drivers were asked to check and, if desired, to reaim their mirrors as they drove over a short road route. The FOV measured on their return did not differ substantially from the initial FOV measurements, although all but fourteen drivers adjusted at least one mirror. Combined with the results of the previous study, the findings demonstrate the distribution of mirror FOV for vehicles in use.