Stress and the aging brain
Stress and the aging brain: What are the issues?

- Aging makes us less able to adjust to change
- Reactions of elderly to change generate stress
- Stress response involves
 - acute reactions
 - chronic reactions
Acute stress responses

• Sympathoadrenal responses
 • Autonomic functions for emergencies
 • Increased heart rate
 • Vasoconstriction

• Mediated by
 – splanchnic nerves
 – ganglia
 – plexuses

• Neurotransmitter: NE
Acute sympathoadrenal stress responses

- Increased sympathetic tone
- Cardiac manifestations
 - reduced HR variability
- Vascular manifestations
 - reduced vascular compliance
 - hypertension
- Gastric manifestations
 - gastric acid : ulcers
 - ulcerative colitis
Autonomic innervation of the heart

- Parasympathetic (slows down the intrinsic HR)
- Sympathetic (speeds up the resting HR)
Acute sympathoadrenal stress responses

- Adrenal medulla is a rudimentary sympathetic motor nerve
- The second cell produces hormones (80% E, 20% NE) instead of neurotransmitter
- E has actions similar to NE
Brain perception of stress

• Central neural response to stress
 – activation of autonomic reflexes
 – secretion of stress hormones

• Mental distress
 – depression
 – anxiety

• Brain damage inflicted by stress hormones
Central nervous system and stress

• Insular and prefrontal cortex
• Hypothalamus
 – paraventricular and other nuclei
• Limbic forebrain
 – septum
 – hippocampus
• Brainstem nuclei
• Reticular formation
Hypothalamus

- Paraventricular nucleus
 - sympathetic outflow
 - secretion of CRF (HPA axis)
- nuclei controlling homeostatic functions
- nuclei controlling biological rhythms
- nuclei controlling hormone secretion
Hypothalamus and limbic system

- Ventromedial hypothalamus
- Amygdala
- Midbrain & central gray
- Fight-or-flight response
Fight of flight response

- Walter Cannon’s “fight or flight response”
- Sympathoadrenal activation
- Cardiovascular symptoms
- Blanching
- Widening of pupils
- Piloerection
- Sweating
Hypothalamo-pituitary-adrenal axis

- Paraventricular nucleus secretes of CRF (corticotropic releasing factor) into the hypothalamo-pituitary portal circulation
- CRF stimulates secretion of ACTH by the anterior pituitary
Hypothalamo-pituitary-adrenal axis

- Paraventricular nucleus secretes CRF (corticotropin releasing factor) into the hypothalamo-pituitary portal circulation
- CRF stimulates secretion of ACTH by the anterior pituitary
Hypothalamo-pituitary-adrenal axis

- ACTH stimulates the adrenal cortex
- Adrenal cortex releases cortisol
- Cortisol has
 - metabolic
 - catabolic
 - anabolic actions
• Cortisol actions
 – metabolic
 • hyperglycemic
 • lipolytic
 – catabolic
 • apoptosis
 • muscle & bone loss
 – immune
 – vascular (after hemorrhage)
 – anabolic actions
 • glycogen synthesis
 • fat synthesis
 – neurotoxic
 • damage to hippocampal neurones
Role of cortisol in chronic stress

• Hans Selye general adaptation syndrome
 – Activation
 • increased glucocorticoid secretion
 – Adaptation
 • Hypertrophy of adrenal cortex
 – Exhaustion
 • Adrenocortical failure
Changes in cortisol secretion in aging

- HPA axis responsivity increases with aging
- Test of cholinergic stimulation of CRF secretion with physostigmine (anticholinesterase)
- Old individuals react more strongly than the young ones
Changes in cortisol secretion in aging

- HPA axis responsivity increases with aging
- Test of cortisol negative feedback in a metyrapone test
- Metyrapone blocks cortisol synthesis
- Cortisol infusion tests cortisol feedback on ACTH production
- Blunted response in the aged
Changes in cortisol secretion in aging

- Although cortisol and ACTH concentrations do not change much with aging
- Sensitivity of HPA axis to stimulation increases
- Glucocorticoids are neurotoxic to hippocampal neurons
- Cognitive function impaired in Cushing’s patients or volunteers receiving cortisol infusions
Types of stressors

• Stressors: conditions that
 – endanger
 – are perceived to endanger

• Types
 – Psychological response to threat
 • fear
 • anxiety
 – Physical stress with psych component
 • pain
 • electric shock
 – Cardiovascular stress
Cardiovascular stresses

• Challenge cardiovascular homeostasis
• Examples
 – hemorrhage
 – orthostatic tilt
 – exercise
 – heat exposure
Cortisol damage to hippocampal neurons

- Neurosecretory cascade
- Hippocampus has high density of glucocorticoid receptors
• Hippocampus is plastic and vulnerable to damage
 – long-term potentiation
 – remodelling of dendrites
 – neurogenesis in dentate gyrus
 – synaptic remodelling
• Site of spatial and declarative memory
• Site of processing of emotional information
• Evidence for neuronal loss in individuals exposed to high cortisol titers
• Genetically vulnerable region
• Apoptosis evidence for cortisol in tissue culture
Neuroprotective role of DHEA

• DHEA in early development
Neuroprotective role of DHEA

- DHEA with aging
Neuroprotective role of DHEA

- DHEA-cortisol ratio with age
Neurotoxic effects of cortisol

- Cortisol and apoptosis
Neuroprotective role of DHEA

- Anti-apoptotic effects of DHEA
Neuroprotective role of DHEA

- DHEA/cortisol ration and depression