Early Discovery Channels in CMS

Jim Pivarski
Texas A&M University

on behalf of the Compact Muon Solenoid (CMS) collaboration

LHCDM@MCTP: The LHC and Dark Matter

6 January, 2009
“Early discovery channels”

- Based on recent LHC schedules, we can hope for about 100 \(pb^{-1} \) of 10 TeV collisions in 2009
- Full re-analysis at 10 TeV is under study, but most production cross-sections will be reduced by about a factor of 2, depending on mass
- In this talk: 14 TeV analyses reoptimized for 100 \(pb^{-1} \)
 - new results, post-Physics TDR
 - roughly what we may see this year

Outline of this talk

1. CMS detector
2. Standard Model: rediscovery, service measurements, and new modes
3. Brief note on SUSY
4. Di-object signature searches: \(e^+ e^- \), \(\mu^+ \mu^- \), jet-jet, jet-\(\not{E}_T \), . . .
5. Heavy, long-lived particles and other models
Nearly 4π general-purpose detector
- All-silicon tracker
- Solenoidal magnetic field
- Highly-redundant muon tracking system (44 muon layers in barrel)
Rediscovering the Standard Model

- Signals and backgrounds at 10 pb^{-1}

 $e^\pm \nu$ or $e^+ e^-$

 W^\pm

 missing transverse energy

 $\mu^\pm \nu$ or $\mu^+ \mu^-$

 transverse mass

- Z^0

 $e^+ e^-$ mass

 $\mu^+ \mu^-$ mass

- Top quarks observable with $10–100 \text{ pb}^{-1}$ (see Oliver’s talk)
Using the SM for future discoveries

- Determine electron and muon efficiencies by tagging one leg of a $Z \rightarrow \ell\ell$, probing the other (right)

- W^\pm charge asymmetry (below)

\[
A(\eta) = \frac{(d\sigma/d\eta)(W^+) - (d\sigma/d\eta)(W^-)}{(d\sigma/d\eta)(W^+) + (d\sigma/d\eta)(W^-)}
\]

- probes u/d PDFs for other analyses
- depends only on detector issues that are currently being studied with real data in cosmic ray asymmetry
Discoveries in the Standard Model

- $Zb\bar{b}$ and di-bosons (re-discovery):
 - background for Higgs searches
 $$H \rightarrow ZZ \rightarrow 4\mu, \text{SUSY } H \rightarrow 2\tau(\mu)$$

- Higgs boson? Even a heavy Higgs?
 - $H \rightarrow ZZ$ sensitivity starts at 3 fb$^{-1}$
 (for 95% C.L. in $200 < M_H < 400$ GeV)
 - $H \rightarrow WW$ has ~ 10 signal, ~ 10 background events at 100 pb$^{-1}$
 with a boosted decision tree analysis
 - comparable to Tevatron’s reach
SUSY at 100 pb$^{-1}$ (briefly)

- From the Physics TDR (which focuses on 1 fb$^{-1}$ and above)
- See Oliver and Anwar’s talks for more details on SUSY modes
Di-object signature searches

- Look for a (high) mass peak or enhancement in inclusive X-Y pairs, where X and Y are reconstructed “physics objects” like e^{\pm}, jet, \not{E}_T

- Between a specific-model hunt and completely generic search
 - physics motivation is strong but loosely-specified:
 - **di-muon**: electroweak couples to leptons, easiest to identify
 - **di-electron**: electroweak couples to leptons, high-resolution calorimetry at high energy
 - **di-jets**: new physics may be strongly interacting, high statistics
 - **jet-\not{E}_T**: dark matter shows up as missing energy
 - **$t\bar{t}$**: new physics will likely be coupled to the third generation *(demands new techniques because W and b jets overlap in boosted tops)*
 - **di-tau**: new physics will likely be coupled to the third generation
 - **$\gamma\gamma$**: easy way to identify spin-2 parent
 - small set of simply defined channels (good for low statistics)

- Also help to commission the reconstruction of physics objects for more sophisticated analyses
Di-electrons/muons: Z', RS-1 G^*

$Z'_\psi \rightarrow e^+ e^-$

$Z'_\psi \rightarrow \mu^+ \mu^-$

- Easiest-to-identify signature of new self-adjoint bosons (and therefore a very early analysis)

- Long lever arm in muon tracking system helps to resolve straight tracks and high redundancy helps to distinguish delta rays from TeV muon showering
Measuring cross-section relative to Z^0 reduces systematic uncertainties:

- integrated luminosity will only be known to 10–20% in early data
- PDF uncertainties from $q\bar{q}$ initial states are reduced in the ratio

95% C.L. upper limit on an unobserved Z_{ψ} cross-section

$$\approx \left(10–30 \times 10^{-6}\right) \times Z^0 \text{ cross-section}$$
Di-jets: contact interactions, q^*, SUSY

- Enhanced production at high mass (for central $|\eta|$: contact interactions
- Resonance peaks: excited quarks (q^*), new bosons Z', RS-1 G^*
- Angular correlation: direct-decay SUSY e.g. $\tilde{q}\tilde{q} \rightarrow q\chi^0_1 q\chi^0_1$

\[\alpha_T = \frac{E_T(jet\ 2)}{M_{\text{transverse} \ inv}(jets\ 1&2)} \]

(L. Randall and D. Tucker-Smith arXiv:0806.1049)
$E_T + 1$ or more jets: ADD gravitons

- Simple signature: $E_T + 1$ jet is the missing energy analogue of a di-object search
- Application: if extra dimensions lower the Plank mass to the TeV scale, real gravitons would be emitted in quark/gluon collisions (ADD model and variations)
- Optimistic case in 100 pb$^{-1}$ pictured below: number of dimensions $\delta = 2$ compactification scale $M_D = 2$ TeV

Significance in 100 pb$^{-1}$

3 is 99.6% C.L.
5 is a 5σ discovery
Missing energy is a physics object commissioned in simple signatures, to be used later in dark matter searches

Decomposition of \not{E}_T resolution (top plot)

$$\sigma(\not{E}_T) = A \oplus B \sqrt{\sum \not{E}_T - D} \oplus C (\sum \not{E}_T - D)$$

A. electronic noise, pile-up, underlying event
B. statistical sampling in calorimeter towers
C. non-linearities, cracks, dead material
D. effect of noise, etc. on $\sum \not{E}_T$

where $\not{E}_T = |\text{vector missing momentum}|$
and $\sum \not{E}_T = \text{the scalar sum}$

Snapshot from real data: response of calorimeter towers to muons, a \not{E}_T correction, as seen in cosmic rays (bottom plot)

See James Lamb and Paolo Rumerio’s talks for more
Heavy, long-lived charged particles

- New particles might be charged and live long enough to be detected (split SUSY, part of WIMP sector...)

- Unusual detector signature: would look like a muon with the wrong timing in the CMS drift tubes (top figure) and low-velocity dE/dx in silicon tracker

- Requiring a correlation yields low backgrounds at high mass: 500 GeV stop from split SUSY with 100 pb$^{-1}$ shown at bottom-right
Other new results

- $W' \rightarrow e\nu$ (plot at right)
 - enlarged gauge groups usually predict a new W' as well as Z'
 - can also be thought of as an $e + \slashed{E}_T$ di-object search

- $b'b' \rightarrow WWWW bb$
 - 1–4 leptons + 2 b-jets
 - 100 pb$^{-1}$ 95% exclusion at the few-pb level up to $M_{b'} = 480$ GeV (well below predicted cross-section for these masses)

- Heavy Majorana neutrino $\rightarrow \ell W_R$ with $W_R \rightarrow$ jet jet
 - signature 1: dijet mass peak + 2 leptons (produced through W_R)
 - signature 2: dijet mass peak + 1 lepton (produced through Z_R)

- Model Unspecific Search in CMS (MUSiC)
 - 300–400 combinations of e, μ, γ, jet, \slashed{E}_T
Conclusions

- With 100 pb$^{-1}$, we can do more than “rediscover the Standard Model”

- Di-object searches are a simple way to address broad classes of new physics with small statistics, and at the same time improve our understanding of the detector response

- Understanding the detector with real data will be key to all analyses, early and long-term

- Trigger and pattern recognition are also being made sensitive to unusual detector signatures like long-lived charged particles, R-hadrons that stop in the calorimeter or cavern, etc.

- Not everything was included in this talk, I hoped to highlight those analyses which can be performed with low statistics
<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>EWK-08-005</td>
<td>Measurement of the W and Z cross section with electrons</td>
</tr>
<tr>
<td></td>
<td>EWK-07-002</td>
<td>Measurement of the W and Z cross section with electrons</td>
</tr>
<tr>
<td>5</td>
<td>EGM-07-001</td>
<td>Measuring Electron Efficiencies with Early Data</td>
</tr>
<tr>
<td></td>
<td>EWK-08-002</td>
<td>W charge asymmetry</td>
</tr>
<tr>
<td>6</td>
<td>EWK-08-001</td>
<td>Measurement of Z boson production in association with two b-jets</td>
</tr>
<tr>
<td></td>
<td>From Figure 3.5 (page 54) CMS-TDR-008-2 CMS Physics TDR: Vol. II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIG-07-001</td>
<td>Higgs to WW</td>
</tr>
<tr>
<td>7</td>
<td>Relabeling of CMS-TDR-008-2 Figure 13.1 (page 405) for 100 pb$^{-1}$ production</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>EXO-08-001</td>
<td>Search for $Z' \rightarrow ee$</td>
</tr>
<tr>
<td></td>
<td>SBM-07-002</td>
<td>Search for $Z' \rightarrow \mu\mu$</td>
</tr>
<tr>
<td>10</td>
<td>Ibid.</td>
<td>Pavel Nadolsky CTEQ PDF developments at PDF4LHC Workshop, Feb 22, 2008</td>
</tr>
<tr>
<td>11</td>
<td>SBM-07-001</td>
<td>Searches for New Physics using high ET dijet events</td>
</tr>
<tr>
<td></td>
<td>SUS-08-005</td>
<td>SUSY search with dijet events (relabelled for 100 pb$^{-1}$)</td>
</tr>
<tr>
<td>12</td>
<td>EXO-08-011</td>
<td>Search for extra dimensions with monojets</td>
</tr>
<tr>
<td>13</td>
<td>JME-07-001</td>
<td>Performance of missing ET reconstruction</td>
</tr>
<tr>
<td></td>
<td>Approved DPG Commissioning Results (internal CMS)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>EXO-08-003</td>
<td>Search for Heavy Stable Charged Particles</td>
</tr>
<tr>
<td>15</td>
<td>EXO-08-004</td>
<td>Search for $W' \rightarrow e\nu$</td>
</tr>
<tr>
<td></td>
<td>EXO-08-009</td>
<td>Search for a b'</td>
</tr>
<tr>
<td></td>
<td>CMS NOTE 2006/098</td>
<td>Heavy Majorana ν and right-handed bosons (internal CMS)</td>
</tr>
<tr>
<td></td>
<td>EXO-08-005</td>
<td>MUSiC— deviations between data and Monte Carlo simulation</td>
</tr>
</tbody>
</table>

See https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults for more