Parts of the solution may be derived in class. However, solve the solution starting from the solution to the one-dimensional time-independent Schrödinger equation for all space, and be sure to show the steps you used to find the solution.

Consider a wave of the form \(A \exp(ik_1x) \) incident on a potential of the form:

\[
V = \begin{cases}
0 & \text{for } x < 0 \text{ or } x > a \\
V_0 & \text{for } 0 \leq x \leq a
\end{cases}
\]

where \(k_1 = \sqrt{2mE/\hbar^2} \) relates the wavenumber of the incident particle to its energy. \(V_0 \) is real, but can have any sign, or magnitude. You may assume that \(A \) is known, and that it’s value correctly normalizes the wavefunction, if the other amplitudes are are expressed in terms of \(A \).

There is no wave incident on the barrier/well from the right.

1. [20% Extra Credit] Derive the solution to the one-dimensional time-independent Schrödinger equation for all space. (The results are given below)
2. Find the transmitted and reflected probability currents in terms of \(A \).
3. Find the reflection (\(R \)) and transmission (\(T \)) coefficients.
4. Verify that \(T + R = 1 \).
5. Plot the real and imaginary parts of the incoming, reflected and transmitted waves, everywhere in the special case, \(V_0 = E/2 \). Additionally, plot the probability density of the wavefunction everywhere.
6. Plot the real and imaginary parts of the incoming, reflected and transmitted waves, everywhere in the special case, \(V_0 = -2E \). Additionally, plot the probability density of the wavefunction everywhere.
7. Plot the transmission coefficient as a function of \(V_0/E \).
8. Plot the reflection coefficient as a function of \(V_0/E \).

Some hints:

The incident wave has the form, \(u_i(x) = A \exp(ik_1x) \), where \(A \) is its amplitude, the reflected wave has the form, \(u_r(x) = B \exp(-ik_1x) \), and the transmitted wave has the form \(u_t(x) = F \exp(ik_1x) \). Additionally, the solution in the region \(0 < x < a \) has the form, \(C \exp(ik_2x) + D \exp(-ik_2x) \), where \(k_2 = \sqrt{2m(E-V_0)/\hbar^2} \). \(k_2 \) can be complex. The solution to the first question is:
\[
\begin{align*}
F &= \exp(-ik_1a) \\
\overline{A} &= \cos(k_2a) - \frac{i}{2} \left(r + \frac{1}{r} \right) \sin(k_2a) \\
\overline{B} &= \frac{i}{2} \left(r - \frac{1}{r} \right) \sin(k_2a) \exp(ik_1a) \\
\overline{C} &= \frac{1}{2} \left(1 + \frac{1}{r} \right) \exp(-ik_2a) \exp(ik_1a) \\
\overline{D} &= \frac{1}{2} \left(1 - \frac{1}{r} \right) \exp(ik_2a) \exp(ik_1a)
\end{align*}
\]

where \(r = k_2/k_1 \).

[20% More Extra Credit]:

Let \(V_0 \) have both real and complex parts. Show that probability generation or destruction can occur, and provide a complete discussion, accompanied by graphs.