Error analysis is required for all relationships that use experimental data with error bars.

1. What is the minimum photon energy required to dissociate 2H? You must account for recoil! Discuss what happens to the electron.

\[
B_D = 2.224526624(39) \text{ MeV} \quad \text{Binding energy of the Deuteron}
\]
\[
M(^2H) = 2.014101778(4)u \quad \text{MeV/c}^2 \quad \text{Atomic Mass of (H)}
\]
\[
u = 931.494061(21) \quad \text{MeV/c}^2 \quad \text{Atomic Mass Unit}
\]

2. Solve the Schrödinger equation for the deuteron, and obtain its normalized wavefunction. Assume it has no orbital or spin angular momentum, and that it has a single bound state in a potential of the form:

\[
V(r) = -V_0 \theta(R_N - r).
\]

What the expression used to determine $\langle r^2 \rangle$. Please leave it in the form of two integrals. For extra credit, prove the that solution for $\langle r^2 \rangle$ given on Slide 21 of the Lecture 11 notes is either correct, or incorrect.

From the typeset notes, Lecture 11, Slides 17 – 21. The complete solution can be seen there.

3. Using the potential and wavefunctions from the previous problem, find an expression for $\langle V \rangle$.

4. Prove each one of these steps, directly, for extra credit (This is a "pretty tough" problem.):

\[
\langle T \rangle = \frac{\hbar^2}{2m} \int_0^\infty d\vec{x} \left| \frac{d\psi}{dr} \right|^2 = \frac{\hbar^2}{2m} \int_0^\infty dr \left| \frac{du(r)}{dr} \right|^2 = |A|^2 R_N \frac{\hbar^2 k^2}{2m} = \beta \left(\frac{\hbar^2}{1 + \beta^2 \frac{2mR_N^2}{\alpha^2}} \right)
\]

Then, show that

\[
\langle T \rangle + \langle V \rangle = E,
\]

as expected.

5. Krane, Problem 5.1, p. 157. Verify your results with the spin and parity assignments given by Krane, and/or databases. Discuss.
