
Physics 406: Homework 6

1. Entropy of the two-state system: In class we looked at a system with two states of energies 0
and ε, in equilibrium with a thermal reservoir at temperature τ.

(a) For this system, calculate the internal energy U and the free energy F .

(b) Thus calculate the entropy of the system σ.

(c) What is the value of the entropy at large temperatures? What is the simple physical reason
for this value?

2. Integral approximations: Using integral approximations, find approximate values for the sums:

(a)
∞

∑
n=1

1
1+ eαn , (b)

N

∑
n=1

lnn, (c)
∞

∑
n=0

1
(β+n)3 ,

where α and β are positive constants. Hint: notice the limits on the sums. (You can work out the
integrals quite easily, but you can also look them up in tables if you prefer or get your calculator
to do them if you have one of those fancy calculators that does that stuff.)

3. Fluctuations in the energy: A system has many states denoted by i = 1,2,3 . . . with energies εi. It
is in equilibrium with a thermal reservoir at temperature τ, which means that it hops from one state
to another over time. Thus there will be fluctuations in the energy of the system—small amounts
of energy will enter and leave the system from the reservoir. Just as we calculated the width of
distributions previously by calculating their standard deviation, we can calculate the width of the
energy distribution, i.e., the size of the energy fluctuations, by calculating the standard deviation
of energy.

(a) Write down the partition function for the system, and differentiate it to show that the internal
energy of the system is

U = 〈ε〉 = τ2 ∂ lnZ
∂τ

.

(b) Now show that the mean squared energy of the system is

〈ε2〉 =
τ2

Z
∂
∂τ

(

τ2 ∂Z
∂τ

)

.

(c) Hence show that the standard deviation σU =
√

〈ε2〉−〈ε〉2 of the energy is given by

σU = τ
√

∂U
∂τ

.

(d) Rewrite this in terms of the heat capacity of the system. Note thus that the fluctuations in the
energy—a microscopic quantity—are directly related to the heat capacity—a macroscopic
quantity. By measuring one, we can measure the other. This result is often used in computer
simulations of thermal systems. You measure the fluctuations of the energy and so calculate
what the heat capacity must be.
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4. Interstellar hydrogen: There is a low density of hydrogen between the stars, typically about one
H2 molecule per cm3. Some of this exists as molecules and some of it is in the atomic state—i.e., it
is pairs of hydrogen atoms. It takes about εb = 4.5 eV to break a hydrogen molecule in two.

Consider a cubic box of volume V = 1 cm3 with a single hydrogen molecule in it, which you can
treat as a point particle of mass 2mp, where mp is the proton mass.

(a) Calculate or write down the partition function Zm for such a point particle at temperature τ.

(b) Now supppose we split the molecule into two H atoms. What is the partition function Za for
the whole system (both atoms in the same box), assuming that the atoms do not interact? An
important point to remember is that the two atoms are quantum mechanically identical and
therefore subject to Gibbs’s 1/N! argument. Also you should allow for the energy of binding.
That is, the energy of each state of the system is 4.5eV higher than it would otherwise be
because we had to do some work to split the molecule apart.

(c) Now consider all possible states of the system, both molecular and atomic. What is the
complete partition function Z for the whole system?

(d) The temperature of the gas in our local region of space is believed to be about a million
Kelvin (due to heating from the stars). Calculate the probability that our hydrogen is in the
atomic state at this temperature. Also calculate the temperature at which the transition from
molecular to atomic hydrogen takes place, which we define as the temperature at which the
probability of being in the atomic state reaches 50%. (The simplest way to solve this last part
is probably just to plug numbers into the equations until you get something that works.)

You should find that at 106 K the hydrogen is almost certain to be in the atomic state, not the
molecular one, even though the molecular state has lower energy. And this is true—most interstel-
lar hydrogen is atomic.
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