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AIC AND BIC FOR MODELING WITH COMPLEX
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Model-selection criteria such as AIC and BIC are widely used in applied
statistics. In recent years, there has been a huge increase in modeling
data from large complex surveys, and a resulting demand for versions of
AIC and BIC that are valid under complex sampling. In this paper, we
show how both criteria can be modified to handle complex samples. We
illustrate with two examples, the first using data from NHANES and the
second using data from a case—control study.
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1. INTRODUCTION

The analysis of survey data has expanded enormously in recent years, driven
in particular by public access to the results of large medical and social surveys
such as the National Health and Nutrition Examination Surveys (NHANES) in
the US or the British Household Panel Survey in the UK. Researchers analyz-
ing such data sets usually have a clear idea of the questions they want an-
swered and would be able to carry out an appropriate analysis if the data had
been selected through a simple random sample. There are problems with the
technical details of the analysis when the data are collected via a complex
survey with varying selection probabilities and multistage sampling. However,
the underlying population, and what researchers want to know about it, are not
changed by the method of data collection. Moreover, most researchers still
want to use the same techniques that they would use with a random sample to
answer these questions and, in our experience, they want to implement them
using programs that mimic familiar software as closely as possible.
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2 Lumley and Scott

After a lot of work by many people over the past 25 years or so, much of
this is now possible. All the main statistics packages have survey versions for
implementing standard techniques such as linear or logistic regression, and
some can handle arbitrary generalized linear models. There are still some
widely used quantities missing from these packages, however. Among the
most notable of these are standard criteria for model selection such as AIC
(Akaike 1974) and BIC (Schwarz 1978). We note that there are a large number
of published analyses of survey data quoting so-called AIC and BIC values—
several thousand just for NHANES or the British Household Panel Survey, for
example. As far as we are aware, there is nothing in the current literature to
justify any of these. However, the existence of so much literature does suggest
that there is a strong desire from subject-matter researchers for versions of stan-
dard model-selection criteria that could be used correctly with survey data.

In this paper, we develop principled survey analogues of AIC and BIC for
fixed-effects regression models fitted using pseudo-likelihood methods. More
specifically, we show that, following the approach of Takeuchi (Takeuchi
1976; Claeskens and Hjort 2008) for possibly misspecified models, AIC can
be modified by inflating the penalty term by a design effect related to the Rao—
Scott correction for log-linear models (Rao and Scott 1984). We also show
how BIC can be extended using a Bayesian coarsening argument, where the
point estimates under complex sampling are treated as the data available for
Bayesian modeling. In the special case of choosing between submodels of a
given regression model, the Laplace approximation argument used to construct
the usual expression for BIC leads to a natural survey analogue. We conclude
with two examples illustrating the end result with two very different sampling
designs. In the first example, we investigate the effect of sodium consumption
on hypertension using data from NHANES. In the second example, we look at
the effects of alcohol and tobacco use on esophageal cancer using data from a
well-known case—control study. We compare the results with those obtained
with two ad hoc methods that are in fairly common use.

2. BASIC SETUP

We adopt a now-standard pseudo-likelihood approach. Our development
follows that given in Lumley and Scott (2014), where a more extensive ratio-
nale for the approach is given. We have observations {(y;, x;);i € s} on a re-
sponse variable, y, and a vector of possible explanatory variables, x, from a
sample, s, of n units drawn from a finite population or cohort of N units using
an arbitrary probability sampling design. Let w; be the weight associated with
the ith unit with this design. (In many cases, the weights will be the inverse se-
lection probabilities, perhaps adjusted to compensate for non-response and
frame errors by calibration to known population totals; other choices are possi-
ble, as in Pfefferman and Sverchkov [1999] and Hernan, Brumback, and
Robins [2000], for example). We shall assume that the finite population values

GTOZ ‘€2 Yore |\ uo uebIydiA Jo Alisieaiun e /Blo'seulnolploixo wess(y:dny woly papeojumoq


http://jssam.oxfordjournals.org/

AIC and BIC for Surveys 3

are generated independently from some distribution with density g(y, x). This
is much less restrictive than it might appear at first sight: we can generate pop-
ulations with very complex spatial correlation structures by measuring extra
variables, such as latitude and longitude, for example, and sorting on them. A
more detailed discussion is given in Lumley and Scott (2013).

Suppose that, after plotting the data and carrying out other preliminary in-
vestigations, we decide that we want to fit a parametric model, {fp(y|x),
0 € ® C R}, for the conditional density of y given x. We do not assume
that this parametric family necessarily contains the true model g. The
Kullback-Leibler divergence between an arbitrary member of the family, f,,
and g(y/x) is

KL(fyv5) = E, [log{ Z((yy';))}] _ EllogsOlv)] - 48, (1)

where /(0) = E,[logf,(y|x)] is the expected population log-likelihood. The
first term does not involve @, so that the best-fitting model in our class, in
the sense of minimizing the Kullback—Leibler divergence between it and the
superpopulation model g(-), is obtained by maximizing the expected log-likeli-
hood 7(8). We shall assume that the maximum is attained at a unique value of
6, which we shall denote by #*. For standard regression models with normal
errors, choosing the model with 8= 6* is equivalent to choosing the model
that minimizes the mean squared prediction error of a new observation drawn
from the superpopulation.

Since for any fixed value of 6, £(0) is just a population mean, we can esti-
mate it from our sample, for example by the weighted estimator

70) = S wii(6), @)

i€s
where £;(0) = logfy(y;|x;). (We shall assume that the weights are scaled so
that " w, = N.) Let 6 be the value we obtain by maximizing 1 (@). Under suit-

i€s
able regularity conditions (see section1.3 in Fuller [2009], for example), Bisa
consistent estimator of 8% as n, N — oo. This is the basis of the approach de-
veloped by Fuller (1975) for linear regression and by Binder (1983) for more
general regression models. It is the approach underlying all the major statistical
packages for fitting regression models to survey data and the one that we shall
adopt here.

We shall also adopt the asymptotic setting and regularity conditions of
Theorem 1.3.9 in Fuller (2009). We have a sequence of finite populations
assumed to be random samples from a fixed superpopulation. As we noted
above, this is much less restrictive than it might sound. The regularity condi-
tions impose restrictions on the superpopulation (finite fourth moments), on
the sequence of sampling designs and associated weights (a central limit
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theorem for weighted estimators), and on the parametric family {f,} (continu-
ous second derivatives). Under these conditions, 6* satisfies the population
score equation U(#) =0 and 0 satlsﬁes the pseudo-score equation U (0) =0,
where U(0) = 9¢(0) /90 and U(0) = ( 0)/00.
Then, it follows from the theorem above that

Vn(0—6) - N0, V(6')) as n— . (3)
We can estimate V(6%*), the asymptotic covariance matrix of \/ﬁa consistently
by

V=30 T,@®I@)

where 7 (0) is the analogue of the observed information matrix defined by

- 020(0 520,(0
e A ——
J(6) aoaoT Z aoaoT ’

and V() is a consistent estimator of Cov[/nU(8)]. (Since U(8) is a vector
of population totals, it is reasonable to assume that such an estimator is avail-
able routinely.)

Note that 6* is a superpopulation parameter in our treatment and the distri-
butions involved are those generated by the combined operation of choosing a
finite population from the superpopulation and then selecting a sample using
the sampling design. It would also be possible to work within a strict finite
population framework with #* defined as the solution of the finite population
score equations. In large populations, the results are almost identical.

In the next section, we build on all this to construct useful analogues of AIC
and BIC for use with survey data. More specifically, we assume that the regu-
larity conditions underlying (3) are satisfied and that we have a program that
calculates the vector of estimated regression coefficients, 6, along with the esti-
mated covariance matrix, V. This will need either information on cluster and
stratum membership for every sample unit, or a set of replicate weights.

3. Model-selection criteria
3.1 AIC

Our development follows that for independent sampling in Claeskens and
Hjort (2008). From (1), the appropriately weighted Kullback—Leibler diver-
gence of our fitted model, f;, from the true model is

KL(f;,g) = E,[log g(y[x)] — £@),

where /(0) = E,[log f,(y|x)] is the expected population log-likelihood. If we
are comparing a number of candidate models, then we are interested in
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maximizing ((), since the first term is the same for all models. Now @, and
hence £(#), is a random variable. The AIC strategy is to estimate
E,[((0)] = Q,, say, for each candidate model, and then select the model with
the largest estimated value of Q,. This is equivalent to searching for the model
with the smallest estimated average Kullback—Leibler divergence from the true
model. N

A naive first estimate of Q, would be £(@). This turns out to be an over-

estimate. More precisely,

~ o~

E{®) = 0, + A} +0,(n7), @)

where A = 7(6")V(0') with V(6*) denoting the asymptotic covariance matrix
of \/n @ and

824(0)

(0) = E(T(0)) =~ o 7.

Note that the expectation here is with respect to both the sampling design and
the superpopulation distribution. A sketch of the proof is given in the appen-

o~

dix. This result leads to /(@) — p§/n, where p is the dimension of # and
8=tr{A}/p, as a bias-corrected estimate of Q,. We can estimate & by

5= tr{nj7 (?1?)7l \7U(5)} = nJ(0)V(0). Both J and V are computed routine-

ly in the course of calculating 0. For consistency with the standard expression
for AIC under random sampling, we multiply by —2# to obtain

~
o~ =

dAIC = —2nl(0) + 2p,

as our modified design-based version of AIC for survey data. We want to
make this as small as possible.

If we had a simple random sample and if the true model g(ylx) belonged to
our parametric family fy(ylx), then V(6*) would be equal to Z (6" )_1. Thus, it is
natural to call A = Z(6")V(6") the “design effect matrix,” as in Rao and Scott
(1984). To calculate dAIC, we simply have to inflate the usual penalty term,
2p, by the average estimated design effect, §.

Under simple random sampling, where the weights are constant, dAIC
reduces to TIC, the robust version of AIC developed by Takeuchi (1976).
If, in addition, our parametric family contains the true model, then A reduces
to the p x p identity matrix, so that § = 1 and we get the conventional expres-
sion for AIC. For overdispersed generalized linear models, dAIC is very
similar to the modified version of AIC suggested by Claeskens and Hjort
(2008, section 2.7), with & acting as an overdispersion parameter. If & had the
same value for all models under consideration, we could divide by this
common value and use —2n¢(8)/8 + 2p, which is essentially the QAIC crite-
rion suggested in Lebreton et al. (1992) for overdispersed count data. In the
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6 Lumley and Scott

examples in section 4, as in most surveys, & depends on the particular model
being fitted and the dAIC version should be used.

In standard statistical theory, there is a close relationship between AIC,
leave-one-out cross-validation, and the jackknife (Stone 1977). Similar results
can be demonstrated in the survey context. A natural cross-validation estimator

-~

of £(0) in single-stage sampling would be

-1 -
L, = N Zfa Wiei(o(i))v

where ?)(,.) is the estimator computed from the reduced sample obtained by
omitting the ith unit. If the replication weights for the ith subsample are given
by W}’) = k,w; with k;= N/(N — w)), then we can show that

~ 1 ~ o~ e

Ecv NZ W/,(O) - tr[jn(on) VJ] + 01)(’171)

iE€s

o~~~ o~

= 1(0) — t[7,(0,)V,] +0,(n"),

where V, = =l Zi(/é(,-) —8)” is the jackknife estimator of Cov{8}. A sketch of
the proof is given in the appendix. A similar result holds to op(c’l), where c is
the number of primary sampling units in the sample, for multistage sampling
when replicates are formed by omitting one primary sampling unit at a time.
Thus, minimizing the cross-validation estimate of the prediction error of a new
observation drawn from the superpopulation distribution would be asymptoti-
cally equivalent to minimizing dAIC for any design where the jackknife provides
a valid variance estimator. This connection is perhaps not surprising, given the
well-known bias-correcting property of the jackknife (Quenouille 1949).

3.2 BIC

The Bayesian Information Criterion (BIC) (Schwarz 1978) is based on an as-
ymptotic Bayesian argument. Suppose that there are a finite number of models
under consideration. In conventional random sampling theory, a Laplace ap-
proximation to the marginal log-likelihood log A,, of model m gives

log\,, = log Lm(?),,,) - %logn +0,(1)

where L, (0) is the likelihood, ?am the maximum likelihood estimator of @, and
p,,=dim(6) under model m. In large samples, choosing the model with the
highest marginal log-likelihood thus corresponds to minimizing

o~

BIC = —21logL(#,,) + p,, logn.

If one of the models under consideration is true, BIC will select it with prob-
ability converging to one. More realistically, if none of the models are true, the

GTOZ ‘€2 Yore |\ uo uebIydiA Jo Alisieaiun e /Blo'seulnolploixo wess(y:dny woly papeojumoq


http://jssam.oxfordjournals.org/

AIC and BIC for Surveys 7

closest model in the Kullback-Leibler sense will have posterior probability
converging to one (see Shalizi 2009), and so will be selected by BIC.

In general, BIC does not adapt as neatly as AIC to complex sampling, since
a full Bayesian analysis would require a joint probability model for the sam-
pling process and all the measured variables, including all design variables. In
his 2007 Wald lectures, Berger used such a full-model approach to develop an
extension of BIC to account for the variation in effective sample size between
parameters in models fitted to clustered data.

It is possible to construct a natural analogue of BIC for the more limited
purpose of selecting between submodels of a given regression model. More
specifically, if all the models under consideration are submodels of a maximal
model M, then model selection reduces to deciding which of the constraints
defining the submodels are satisfied by 8,,. Without loss of generality, we can
consider just the case where submodels are defined by zeros in certain compo-
nents of 8,,. In this situation, it follows from the asymptotic equivalence of the
Wald and likelihood-ratio tests (Seber and Wild 2003, section 12.4) that, ignor-
ing terms of O,(1), the usual expression for BIC is asymptotically equivalent to

BIC* = W,, — (py — ) logn + const,

where p,, is the number of non-zero components of 8, and W,, is the Wald sta-
tistic for testing that model m is true (i.e., that the appropriate components of
6, are zero). In this form, BIC generalizes immediately to survey inference.

We consider a coarsened Bayesian approach in which 6,,, the pseudo-
likelihood point estimate for the full model, is regarded as the data available to
the analyst, and base its likelihood on the approximate Gaussian distribution
0 ~N(0,n" v w)- The Laplace approximation underlying the usual BIC ap-
proximates the likelihood of the data by a Gaussian likelihood for the
maximum likelihood estimator. The same approximation can be used for
design-based inference. The approximate marginal likelihood of model m is
given by

h = [ ()9l 2 200 0 oy
2

where 7,,(0) is the prior for @ given model m. Let 0(,” denote the subvector of
OM containing those components that are set to zero under model m and V
the corresponding submatrix of VM Then, the same approximation used to
construct BIC now gives

2log\,, = (py — pn)logn,, — W, + 0,(1),

,-\

where W, is now the design-based Wald statistic, W,, = n 0 /0\<m), for
testing the hypothesis that 8, =0 and #,, is an effective sample 51ze More spe-
cifically, n;, = n/ d (m)» Where d(,,,) is the geometric mean of the eigenvalues of
the design effect matrix, D, = Z (m)-1 V(,,,), with Z"" denoting the appropriate
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submatrix of Z~'. (Recall that Cov[am)] would be equal to Z™ under simple
random sampling.) The geometric means arise because of the presence of

det[V,] in the Gaussian likelihood. A sketch of the proof is given in the ap-
pendix. This leads to

as our design-based version of BIC. We want to make dBIC as small as possi-
ble. As with the usual BIC, the first term, W,, penalizes oversimplification,
while the second, —(p,, — p,,) log n;,, penalizes complexity. We can set the
constant (which is equal to dBIC,, for the full model) to any value we like,
since this does not affect the relative likelihood and hence the posterior proba-
bility of model m. For simplicity, we set it equal to zero in the examples, so the
values presented really represent dBIC,,—dBIC,,. Note that dBIC is the BIC
value for the reduced Gaussian likelihood and hence, provided E(m) is
bounded, inherits all the standard BIC properties.

Note also that D, although a design effect matrix, is quite different from
the design effect matrix A appearing in the expression for dAIC. Basically, D,
measures the effect of the design on 6,,,, corresponding to the zero compo-
nents of 6,, while A measures the effect on the estimates of the complementary
non-zero components. Details are given in the appendix.

For the special case of p = 1, a criterion equivalent to dBIC was proposed by
Fabrizi and Lahiri (2007) based on slightly different reasoning. They give two
versions, with and without the E(m) term (i.e., with ng,, and with n{,, replaced
by n). The difference will be of smaller order than the other terms in dBIC if
design effects for the parameters are bounded but can still be important, even
with moderate sample sizes, when design effects are large. Using n,, ensures
that dBIC has the useful property of being invariant under artificially increas-
ing the sample size by duplicating data. They conduct a simulation study with
observations generated from a beta-binomial distribution under a number of
parameter settings. A full likelihood analysis is possible in this setting, and se-
lection based on the dBIC criterion gives almost identical model choices to
those based on the true BIC in their simulations.

Another alternative version of BIC, BIC, = —2/,,(0,,) + p,, log n, has been
proposed recently by Xu, Chen, and Mantell (2013), who give a non-Bayesian
justification. If we write this in the form BIC, = A,, — (py — Pw) logn + const,
where A,, = 2n[{,,(6,) — ¢,(0,)] is the pseudo likelihood-ratio statistic for
testing the hypothesis that 6,,,=0, we see immediately that BIC, is equal to
dBIC with the Wald statistic, W,,, replaced by the pseudo likelihood-ratio sta-
tistic for the same hypothesis and n;, by n. Note that W,, is exactly equal to the
likelihood ratio statistic for the approximate Gaussian likelihood. Roughly
speaking, A,, acts like (n/n")W,, (see Lumley and Scott 2014), so that BIC,
behaves like dBIC with n* replaced by n. Thus, we might expect dBIC and
BIC, to lead to broadly similar models if design effects are not too far from
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one. This is what happens in Example 1 in the next section, where design
effects are all less than two. If design effects are large, BIC, overestimates the
amount of information in the sample and chooses a more complex model. On
the other hand, if design effects are less than one, as can happen with an effec-
tive stratification, BIC, underestimates the amount of information and prefers
simpler models. Example 2 illustrates an extreme case of this.

Xu, Chen, and Mantell (2013) show that, if one or more of the models is
true, then the probability that the most parsimonious true model is selected
using the BIC, criterion converges to one as n — o0. We note that the same ar-
gument can be applied immediately to dBIC: the key feature of the derivation
is to show that the likelihood-ratio test statistic A,, is O,(1) if model m is true
and of order n if some components of 6, are not zero. These properties follow
directly for W,

4. EXAMPLES

We present two examples from different extremes of sampling. The first uses
data from the National Health and Nutrition Examination Survey (NHANES),
which is a series of stratified multistage surveys with a large sample size but
very few primary sampling units. The second is a well-studied case—control
sample that investigated risk factors for esophageal cancer in Brittany. The
case—control sample has no clustering, but has extremely variable weights,
with big differences between those for cases and controls. It has the advantage
of being one of the rare survey designs where a full maximum likelihood anal-
ysis is available for comparison.

4.1 Hypertension in NHANES

We examine the association between sodium intake and hypertension using
data from NHANES, which is a multistage probability sample of the civilian
non-institutionalized population of the United States, with data released in
two-year waves. Each two-year wave samples approximately 10,000 people,
from approximately 60 clusters (cities or counties) in 30 strata. We use data
from the 2003—4 and 2005-6 waves (Centers for Disease Control and Preven-
tion [CDC] 2005, 2007).

After restricting consideration to the clinical-examination sample and re-
moving missing data, the sample size is n = 13,057 and the estimate of the cor-
responding non-missing population size is N=2.5x 10%. The impact of the
sampling design varies considerably among variables depending on their geo-
graphic clustering and their relationship to the design criteria. For example, the
design effect is 2.1 for the proportion of women, 8.6 for mean age, and it
varies from 7.8 for “Other” to 38 for “Non-Hispanic Black™ for proportions in
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race/ethnicity categories. Design effects are high because the clusters are large,
due to the cost of moving the big mobile examination centers needed for the
detailed clinical examinations and blood samples.

We fit logistic regression models for hypertension prevalence, defined as
systolic blood pressure above 140 mmHg or diastolic blood pressure above
90 mmHg, consider adjustment for age, race/ethnicity, and gender, and present
model-selection criteria for five nested models: a natural cubic spline in age,
then adding race/ethnicity, then gender, then a gender by age-spline inter-
action, and finally sodium intake estimated from a food-frequency question-
naire. A similar analysis using systolic blood pressure instead of hypertension
is given by Lumley (2010, Ch. 4). A sketch of the exploratory analyses that led
to our class of models is given there. A more realistic model would be more
complicated with random-effects terms for the geographical clusters, for
example. However, a family of marginal models might still be appropriate
for a researcher developing a model that could be used to predict outcomes for
new patients not in one of the sample clusters.

Table 1 shows values p, §,dAIC,n* and dBIC,, (centered about dBIC,,) as
we add terms to the models. Just as with their random-sampling equivalents,
dBIC penalizes complexity more severely than dAIC and usually leads to
simpler models. In this example, however, both criteria lead to the same
model, namely the one containing all the adjustment variables except sodium.
Standard Wald tests suggest that the effect of sodium is not significant
(p=0.57) while the gender:age interaction is very significant (p=>5 x 10°),
providing alternative support for this model choice.

4.2 Case—control study of esophageal cancer

The classical case—control design is one of the most widely used examples of
unequal-probability sampling in medical research, and is one of the few impor-
tant complex-sampling designs where a full probability model is easily avail-
able. When a logistic regression model is fitted to case—control data, the full
maximum likelihood estimator for all parameters except the intercept is

Table 1. Models for Hypertension, Using AIC for Selection: Spline in Age, Race/
Ethnicity, Gender, Gender: Age Interaction, Sodium Intake

Model p B dAIC n* dBIC
Age spline 4 1.83 -196.4 10454 293.2
+ Race/ethnicity 8 1.84 —239.6 9957 73.4
+ Gender 9 1.78 -238.0 8444 82.6
+ Gender:age 12 1.69 —422.0 4211 -8.0
+ Sodium 13 1.82 -416.8 - -
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obtained by unweighted logistic regression (Prentice and Pyke 1979). The
AIC and BIC values produced by the program are also valid, provided the
model contains an intercept term. The weighted likelihood estimator can be
substantially less efficient than the maximum likelihood estimator, but need
not be, and no simple rule of thumb is available to predict its relative
efficiency.

The combination of a design effect very different from unity (here smaller
than one because the stratified case—control design is much more efficient than
simple random sampling), very large variation in sampling weights, and the
availability of a full maximum likelihood estimator make logistic regression in
the case—control design a valuable test case for our proposed model-selection
criteria.

We will use data from a case—control study of esophageal cancer in Brittany
(Tuyns, Péquignot, and Jensen 1977), which has been previously analyzed by
Breslow and Day (1980), Lumley (2010), and others, and is available on Pro-
fessor Norm Breslow’s website at http:/faculty. washington.edu/norm/datasets.
html. The data consist of alcohol consumption, tobacco consumption, and age
for 200 men with esophageal cancer and 975 controls. Cases were sampled
with certainty, and controls had a selection probability of approximately 1/441.
This example is interesting because, despite the large variability in weights and
strong covariate effects, weighted and unweighted logistic regression models
give very similar point estimates, so it is meaningful to compare weighted and
unweighted model choice.

We fit seven models, not all nested. The null model has an intercept only,
then we add a quadratic in age. The third model includes linear main effects
for alcohol and tobacco consumption, and we then add a linear-by-linear inter-
action term. The fifth model has terms in log alcohol and tobacco consump-
tion, and we then add an interaction between them. The final subsuming
model includes all the terms in all the other models (and thus contains both
logged and unlogged alcohol and tobacco consumption). Table 2 shows the

Table 2. Models for Alcohol and Tobacco Risk in Esophageal Cancer: Age Alone,
Main Effects of Risk Factors, Linear Interaction Terms, or Discrete Interaction
Terms

Model p dAIC dBIC AIC BIC
Null 1 9.62 48.2 991.9 261.3
Age 3 9.19 48.7 863.2 142.3
Main effects 5 8.65 8.5 740.1 29.0
+Interaction 6 8.39 -27.8 701.1 —-10.1
Log main effects 5 8.67 17.8 741.9 35.6
+ Log interaction 6 8.41 -16.2 703.0 =33
Full 9 8.37 - 691.3 -
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corresponding values of dAIC and dBIC, along with the values of AIC and
BIC (centered at the value for the full model) obtained from the full likelihood.
Model selection based on dAIC or AIC turns out to rank the models in exactly
the same order, with a slight preference for the full model over that with linear
main effects and interaction. Ranking based on dBIC or BIC also gives exactly
the same ordering of models, now showing a clear preference for the model
with linear main effects and interaction.

This particular design is extremely efficient even for a case—control study,
with average design effects around 0.005 and equivalent sample sizes of about
250,000. There are approximately 430,000 people in the population, so the
case—control sample, with a sampling fraction of less than 0.003, recovers
most of the information that we would get with the full cohort. With so much
information, it is not surprising that AIC-based methods, aimed at minimizing
prediction errors, prefer the most complex model available. For scientific un-
derstanding, we might well prefer the BIC-based choice.

4.3 Alternatives

As we noted in the introduction, there are a large number of published papers
that quote AIC or BIC values in the course of analyzing data from complex
sample surveys. It is not always clear how the quoted values were obtained,
but many use one or the other of the ad hoc criteria obtained by replacing the
log-likelihood in the standard expressions for AIC and BIC formulas by either
the estimated census log-likelihood, N, or the weighted log-likelihood scaled
to the sample size, nf. The BIC, method of Xu, Chen, zind Mantell (2013) cor-
responds to this latter approach. Statistics based on N/ are displayed by SAS
PROC SURVEYLOGISTIC (version 9.3), for example, and scaling the
weights to sum to n and otherwise ignoring the design is a simple ad hoc ap-
proach to adopt when accurate design-based methods are not available and has
been a common practice historically. For AIC, the two ad hoc criteria are
equivalent to using our dAIC criterion with & replaced by the sampling frac-
tion, f=n/N, in the first case, and by 1 in the second. The relationships are
slightly more complicated for BIC, but the effects are similar.

In our first example, where N is very large and f'is very small, the census
likelihood, N¢, completely dominates the penalty term and criteria based on it
suggest unreasonably strong support for the most complex model considered.
Using nf, which is equivalent to replacing values of & (mostly just under 2
here) by 1, also results in a reduction in the effect of the penalty term, but a
much smaller one, and gives more reasonable results. Here, the corresponding
AIC and BIC criteria would both lead to the model containing all adjustment
variables except sodium, the model selected using dAIC or dBIC.

In the second example, the sampling fraction is f= 0.0027, while values of &
are also very small, ranging around 0.005. Again, we might expect analyses
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based on N7 to favor more complex models, and both AIC, and BIC, do
indeed select the most complex possible model. In this example, however, this
is not unreasonable, as this is the model selected by dAIC and by the likeli-
hood-based AIC. On the other hand, the criteria based on nf¢ are extremely
conservative, underestimating the amount of information in the sample and
thus overpenalizing complexity. Both prefer the null model, even though age
and both exposure variables all have very significant effects. Case—control
sampling for a rare disease is used precisely because the information content
of a case—control sample is almost the same as if a large fraction of the source
population had been sampled. Thus, it should not be surprising that the evi-
dence for a more complex model scales approximately as N rather than n in
this example.

Our examples show that both of the ad hoc criteria can break down in some
circumstances. Any good rule of thumb for deciding when such breakdowns
might occur must require some idea of the actual & values, and hence almost as
much computation as our design-based criteria.

S. DISCUSSION

The existence of so much literature using invalid versions of standard model-
selection criteria suggests that there is a strong desire from subject-matter re-
searchers for versions that could be used correctly with survey data. The dAIC
and dBIC criteria that we have developed here provide such versions. They
give the same model choices as the standard AIC and BIC criteria in Example
2 and in the simulations in Fabrizi and Lahiri (2007), where valid likelihoods
are available. More generally, their rationale is exactly the same as that under-
lying the standard AIC and BIC and they have exactly the same strengths and
weaknesses. A good account of these is given in Burnham and Anderson
(2002), for example. Values of dAIC and dBIC are both included in version
3.29-9 of the survey package (Lumley 2013) for R (R Core Team 2013), and
implementation should be straightforward for other software that already pro-
vides the Rao—Scott tests for contingency tables.

Similar arguments to those used here can be used to develop design-based
analogues of AIC and BIC in other situations where a parameter estimate is
defined as the solution of a weighted estimating equation, even if that estimat-
ing equation does not have the simple linear form of U(f#)=0. An important
example is fitting Cox models to survey survival data (Binder 1992; Lin
2000). Versions of AIC and BIC based on the partial log-likelihood can be de-
veloped using similar arguments to those used in Lumley and Scott (2013) to
develop analogues of partial likelihood-ratio tests. Taniguchi, Hirukawa and
Tamaki (2010, Ch. 6) also use similar techniques in time-series models to
develop what they call the Generalized Takeuchi Criterion. One important sit-
uation in which this approach does not work is in fitting random effects or
mixed models, and more work is needed here.
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Appendix A: Asymptotics

Our asymptotic results are obtained by supposing that we have a sequence of
finite populations indexed by v and a sequence of samples of size n, drawn
from the N, units in the vth population using some well-defined probability-
sampling scheme. We assume that n,,N, — o with lim sup n,/N,<1 as
v — o0. We adopt the regularity conditions of Theorem 1.3.9 in Fuller (2009)
under which the following results are established as v — o0:

—~ RL %, (8,-6) - N(0,V(6)):
— R2.If {6,} is a sequence of consistent estimators of 6* so that 6, -5 0,
then 7,(0,) 2 Z(0") as v — oo.

It follows that 6, = 6" + O, (n,"*) and 7,(6,) = Z(8") + 0,(1). We shall use
both these results repeatedly.

To avoid the notation getting too cumbersome, we shall omit the subscript v
in most of what follows.

A.1 AIC
Lemma 1. Let B(0) = ¢(6) — ¢(0). Then
B(6)=B(0)+ (60— 6)'T(6)0—60)+0,0n").

Proof. We have

838(((;) =U0)-U)=U(#), sinceU(8) =0,
and 7R ~T(0)+Z(6) = 0,(1).

Expanding B(/(;) about 6%, and recalling that U(6*) =0, then leads to

-~

B(0)=B(0)+U(6) (0—60)+0,(n").

In addition, expanding U (AO) about 6* gives

~ o~

U6)=U(0)—T(0)(0—6)+o0,(n7?).
Setting U(6) = 0 then leads to

~ o~

U(0) =Z(0)(0—0) +0,(n"?),

and the Lemma follows.
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The theorem below follows immediately from Lemma 1 and R2 on taking
expectations and noting that E,[B(6")] = 0.

Theorem 1.

o~

~ 1 -
E[0(0)] = E[((0)] + - ir[A] + 0,(n”"),
where A = Z(0")V(6").
Now consider 6, the estimate computed from the replicate sample ob-

tained by omitting the ith unit. Recall that w = kyw; with k;=N/(N-w)).
Since 6, satisfies U, (0 )) = 0, where

- 1— _
U(i)(o) = NZ W./(') Uj(o) - ki[U - WiUi/N]
J#i
with U, = 9¢,/98, it follows that U(8,,)) = w,U,(8,,)/N.

Lemma 2.

o~ -~

U.(0) = —27(0)(8,—) + o, (n”").

~

Proof. Expanding (/0\([)) about 6 = 0 gives
U(6,)=U(0) —T(0)(68,—0) +0,(n")
= _\7(0)(0([) _0) + Op(n_])a
since U (/6)) = 0. The result follows on setting

o~ WiUi(/o\i)
U(O(i)) :T()v

and noting that U,(8) = Ui(a(,-)) +0,(1)).

Theorem 2.

-~

where V, = =1 1> s (/éi )(5@ -0)".

Proof. Expanding ¢, (T9 ,) about 6 = 0 gives
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using Lemma 2. Thus, discarding the term of 0, (n""),

% Z Wigi(/o\(i) ) - ]%] Z wili (/0\)

where V, = -3~ _ (6, — 0)(03,,) -0)".
A similar result holds to o,(c™") for multistage sampling with PSUs omitted
one at a time.

A.2 BIC

In this section, we assume that there is a maximal model, M, say, with para-
meter 6,, that all the models under consideration correspond to setting some of
the components of 8,, equal to zero. We want to evaluate the marginal likeli-
hood, 4,,, of model m. Reorder the components of @ so that the first p,, compo-

nents are unrestricted and the last (p—p,,) are equal to zero under model m, and
write # and V in the partitioned form

0, s (V, V )
= andV=( =" =12 ).
( 0, > <V21 Vi
(Thus, A02 corresponds to AO(m) and \A722 to \Af(
Then

in the notation of section 6.2.)

m)

Ay = cj 5200 (9,) 6,

where, using standard results for the multivariate normal distribution (Seber
2009), O(6,) can be written in the form

1~ ~ ~ ~ Al o~ o~
Q(ol) = 02 Vu 02 Jr(al()*el)T[Vn -V, Vy Vzl] 1(010*01)7

P
n ~
_("\2 V—l/2
¢ (277') M
n (p=pm)/2 ~ _ n /2 ~ oS o an _
= (E) |V22| 2 (ﬂ) |V11 - V12V221V21| 1/2-

The Laplace approximation in this case is equivalent to simply taking the first
two terms in the expansion of 7,,(6,) about 8, = 0,,. Ignoring terms that do not

m
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involve m and terms of order O,(1), this leads to

1 AT 1~ ~
logX,, :E[(p —pn)logn —n6,V,, 0, —log|Vy |

+ p,,log(2m)] + log m,(8y,).

assuming that z,,(6,) has a bounded second derivative in a neighborhood of 6.
If we had taken a random sample, then V,, would be equal to
5= (T, — T, Z,'T,,)"". If we add and subtract tlog | vV, | to the expres-

sion for log 4,, we get

AT ~—1 ~
210g)\m = (p _pm> logn _nol V22 0+10g |D(m)| =+ Tm7

with D, = V3,'V,, and T,, = p, log(2) + 2log 7,,(8,)) — log |V, | . The
final term, 7,,, is O,(1) and is omitted, as it is in the conventional development

m>

of BIC. The term logID,,| is also O,(1) but can be important with small to
moderate sample sizes if design effects are large. Moreover, retaining this term
ensures that the expression is not affected if the sample size is artificially aug-
mented by replicating observations.

Note that D, which is the design effect matrix associated with the likeli-
hood-ratio test of Hy:6,=0 (see Lumley and Scott 2014), is quite different
from the matrix A appearing in the expression for dAIC. In the notation of this
section, A = Z,,V,, while D, = (Z,, — Z,,Z,\Z,) V.

m)
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