## Pseudo-Bayesian Inference for Complex Survey Data

Matt Williams ${ }^{1}$ Terrance Savitsky ${ }^{2}$<br>${ }^{1}$ National Center for Science and Engineering Statistics<br>National Science Foundation<br>mrwillia@nsf.gov<br>${ }^{2}$ Office of Survey Methods Research<br>Bureau of Labor Statistics<br>Savitsky.Terrance@bls.gov<br>University of Michigan<br>April 8, 2020

## Thank you!

- Terrance Savitsky for being a great collaborator and mentor.
- Brady West and Jennifer Sinibaldi for making this connection.
- Jill Esau for orchestrating.
- You all for sharing your time today!

1. Work

- 9 years as mathematical statistical for federal government: USDA, HHS, NSF
- Sample design, weighting, imputation, estimation, disclosure limitation (production and methods development)

2. Consulting

- International surveys for agricultural production (USAID) and vaccination knowledge, attitudes, and behaviors (UNICEF)

3. Research (ORCID: 0000-0001-8894-1240)

- Constrained Optimization for Survey Applications (weight adjustment, benchmarking model estimates)
- Applying Bayesian inference methods to data from complex surveys.


## Outline

1 Informative Sampling (Savitsky and Toth, 2016)
2 Theory and Examples

- Consistency (Williams and Savitsky, 2020)

■ Uncertainty Quantification (Williams and Savitsky, in press)
3 Implementation Details

- Model Fitting
- Variance Estimation

4 Related and Current Works

## Outline

1 Informative Sampling (Savitsky and Toth, 2016)
2 Theory and Examples

- Consistency (Williams and Savitsky, 2020)

■ Uncertainty Quantification (Williams and Savitsky, in press)
3 Implementation Details
■ Model Fitting

- Variance Estimation

4 Related and Current Works

## Example: Informative Sampling

- Take a sample from U.S. population of business establishments
- Single stage, fixed-size, pps sampling design
- $\mathbf{y}=$ (e.g., Hires, Separations)
- Size variable is total employment, $x$
- $y \not \perp x$.
- $B=500$ Monte Carlo samples at each of $\mathbf{n}_{\nu}=(100,500,1500,2500)$ establishments


## Distributions of $\mathbf{y}$ in Informative Samples



## Population Inference from Informative Samples

- Goal: perform inference about a finite population generated from an unknown model, $\mathbb{P}_{\theta_{0}}(\mathbf{y})$.
- Data: from under a complex sampling design distribution, $\mathbb{P}_{\nu}(\boldsymbol{\delta})$
- Probabilities of inclusion $\pi_{i}=\operatorname{Pr}\left(\delta_{i}=1 \mid \mathbf{y}\right)$ are often associated with the variable of interest (purposefully)
- Sampling designs are "informative": the balance of information in the sample $\neq$ balance in the population.
- Biased Estimation: estimate $\mathbb{P}_{\theta_{0}}(\mathbf{y})$ without accounting for $\mathbb{P}_{\nu}(\boldsymbol{\delta})$.
- Use inverse probability weights $w_{i}=1 / \pi_{i}$ to mitigate bias.
- Incorrect Uncertainty Quantification:
- Failure to account for dependence induced by $\mathbb{P}_{\nu}(\boldsymbol{\delta})$ leads to standard errors and confidence intervals that are the wrong size.


## Outline

1 Informative Sampling (Savitsky and Toth, 2016)

2 Theory and Examples
■ Consistency (Williams and Savitsky, 2020)
■ Uncertainty Quantification (Williams and Savitsky, in press)
3 Implementation Details
■ Model Fitting

- Variance Estimation

4 Related and Current Works

## Why Bayes?

- Allows more complex, non-parametric (semi-supervised) models
- Use hierarchical modeling to capture rich dependence in data
- Have small sample properties from posterior distribution
- Full uncertainty quantification
- Gold standard for imputation


## Pseudo Posterior

- Pseudo posterior $\propto$ Pseudo Likelihood $\times$ Prior

$$
\begin{gathered}
p^{\pi}(\boldsymbol{\theta} \mid \mathbf{y}, \tilde{\mathbf{w}}) \propto\left[\prod_{i=1}^{n} p\left(y_{i} \mid \boldsymbol{\theta}\right)^{\tilde{w}_{i}}\right] p(\boldsymbol{\theta}) \\
w_{i}:=\frac{1}{\pi_{i}} \\
\tilde{w}_{i}=\frac{w_{i}}{\frac{\sum w_{i}}{n}}, i=1, \ldots, n
\end{gathered}
$$

## Similar Posterior Geometry

$$
\mathcal{N}_{P}\left(\mathbf{y}_{i} \mid \boldsymbol{\mu}_{i}, \boldsymbol{\Phi}^{-1}\right)^{w_{i}} \propto \mathcal{N}_{P}\left(\mathbf{y}_{i} \mid \boldsymbol{\mu}_{i},\left[w_{i} \boldsymbol{\Phi}\right]^{-1}\right)
$$

- normalize weights, $\sum_{i=1}^{n} w_{i}=n$, to scale posterior


## Outline

1 Informative Sampling (Savitsky and Toth, 2016)
2 Theory and Examples
■ Consistency (Williams and Savitsky, 2020)

- Uncertainty Quantification (Williams and Savitsky, in press)

3 Implementation Details
■ Model Fitting

- Variance Estimation

4 Related and Current Works

## Pseudo Posterior Contraction - Count Data

$$
y_{i d} \stackrel{\text { ind }}{\sim} \text { Pois }\left(\exp \left(\psi_{i d}\right)\right)
$$



## Frequentist Consistency of a (Pseudo) Posterior

- Estimated distribution $p^{\pi}(\boldsymbol{\theta} \mid \mathbf{y}, \tilde{\mathbf{w}})$ collapses around generating parameter $\theta_{0}$ with increasing population $N_{\nu}$ and sample $n_{\nu}$ sizes.
- Evaluated with respect to joint distribution of population generation $\mathbb{P}_{\theta_{0}}(\mathbf{y})$ and the sample inclusion indicators $\mathbb{P}_{\nu}(\boldsymbol{\delta})$.
- Conditions on the model $\mathbb{P}_{\theta_{0}}(\mathbf{y})$ (standard)
- Complexity of the model limited by sample size
- Prior distribution not too restrictive (e.g. point mass)
- Conditions on the sampling design $\mathbb{P}_{\nu}(\boldsymbol{\delta})$ (new)
- Every unit in population has non-zero probability of inclusion $\Longrightarrow$ finite weights
- Dependence restricted to countable blocks of bounded size $\Longrightarrow$ arbitrary dependence within clusters, but approximate independence between clusters.


## Simulation Example: Three-Stage Sample

Area (PPS), Household (Systematic, sorting by Size), Individual (PPS)



Figure: Factorization matrix $\left(\pi_{i j} /\left(\pi_{i} \pi_{j}\right)-1\right)$ for two PSU's. Magnitude (left) and Sign (right). Systematic Sampling ( $\pi_{i j}=0$ ). Clustering and PPS sampling ( $\pi_{i j}>\pi_{i} \pi_{j}$ ). Independent first stage sample ( $\pi_{i j}=\pi_{i} \pi_{j}$ )

## Simulation Examples: Logistic Regression

$$
\begin{gathered}
y_{i} \mid \mu_{i} \stackrel{\text { ind }}{\sim} \operatorname{Bern}\left(F_{l}\left(\mu_{i}\right)\right), i=1, \ldots, N \\
\boldsymbol{\mu}=-1.88+1.0 \boldsymbol{x}_{1}+0.5 \mathbf{x}_{2}
\end{gathered}
$$

- The $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ distributions are $\mathcal{N}(0,1)$ and $\mathcal{E}(r=1 / 5)$ with rate $r$
- Size measure used for sample selection is $\tilde{\boldsymbol{x}}_{2}=\boldsymbol{x}_{2}-\min \left(\boldsymbol{x}_{2}\right)+1$, but neither $\tilde{\boldsymbol{x}}_{2}$ or $\boldsymbol{x}_{2}$ are available to the analyst.
- Intercept chosen so median of $\boldsymbol{\mu} \approx 0 \rightarrow$ median of $F_{l}(\boldsymbol{\mu}) \approx 0.5$.


## Simulation Example: Three-Stage Sample (Cont)



Figure: The marginal estimate of $\mu=f\left(x_{1}\right)$. population curve, sample with equal weights, and inverse probability weights. Top to bottom: estimated curve, log of BIAS, log MSE. Left to right: sample size (50 to 800).

## Outline

1 Informative Sampling (Savitsky and Toth, 2016)
2 Theory and Examples

- Consistency (Williams and Savitsky, 2020)

■ Uncertainty Quantification (Williams and Savitsky, in press)
3 Implementation Details
■ Model Fitting

- Variance Estimation

4 Related and Current Works

## Asymptotic Variances

- Let $\ell_{\theta}(\boldsymbol{y})=\log p(\boldsymbol{y} \mid \theta)$.
- Rely on the variance and expected curvature of the score function $\dot{\ell}_{\theta_{0}}=\left.\frac{\partial \ell}{\partial \theta}\right|_{\theta=\theta_{0}}$ with $\ddot{\ell}_{\theta_{0}}=\left.\frac{\partial^{2} \ell}{\partial^{2} \theta}\right|_{\theta=\theta_{0}}$
- $H_{\theta_{0}}=-\frac{1}{N_{\nu}} \sum_{i \in U_{\nu}} \mathbb{E}_{P_{\theta_{0}}} \ddot{\theta}_{\theta_{0}}\left(\mathbf{y}_{\nu i}\right)$
- $J_{\theta_{0}}=\frac{1}{N_{\nu}} \sum_{i \in U_{\nu}} \mathbb{E}_{P_{\theta_{0}}}{\dot{\theta_{\theta}}}\left(\mathbf{y}_{\nu i}\right) \dot{\ell}_{\theta_{0}}\left(\mathbf{y}_{\nu i}\right)^{T}$
- Under correctly specified models:
- $H_{\theta_{0}}=J_{\theta_{0}}$ (Bartlett's second identity)
- Posterior variance $N_{\nu} \mathbb{V}(\theta \mid \boldsymbol{y})=H_{\theta_{0}}^{-1}$ same as variance of MLE (Bernstein-von Mises)


## Scaling and Warping of Pseudo MLE

- Mispecified (under-specified) full joint sampling distribution $\mathbb{P}_{\nu}(\boldsymbol{\delta})$.
- Failure of Bartlett's Second Identity for composite likelihood
- Asymptotic Covariance: $H_{\theta_{0}}^{-1} J_{\theta_{0}}^{\pi} H_{\theta_{0}}^{-1}$
- Simple Random Sampling: $J_{\theta_{0}}^{\pi}=J_{\theta_{0}}$
- Unequal weighting: $J_{\theta_{0}}^{\pi} \geq J_{\theta_{0}}$

$$
J_{\theta_{0}}^{\pi}=J_{\theta_{0}}+\frac{1}{N_{\nu}} \sum_{i=1}^{N_{\nu}} \mathbb{E}_{P_{\theta_{0}}}\left\{\left[\frac{1}{\pi_{\nu i}}-1\right] \dot{\ell}_{\theta_{0}}\left(\mathbf{y}_{\nu i}\right) \dot{\ell}_{\theta_{0}}\left(\mathbf{y}_{\nu i}\right)^{T}\right\}
$$

- Shape of asymptotic distribution warped by unequal weighting $\propto \frac{1}{\pi_{\nu i}}$
- If less efficient (cluster) sampling design : $J_{\theta_{0}}^{\pi} \geq J_{\theta_{0}}$
- If more efficient (stratified) sampling design : $J_{\theta_{0}}^{\pi} \leq J_{\theta_{0}}$


## Asymptotic Covariances Different

- Pseudo MLE: $H_{\theta_{0}}^{-1} J_{\theta_{0}}^{\pi} H_{\theta_{0}}^{-1}$ (Robust)
- Pseudo Posterior: $H_{\theta_{0}}^{-1}$ (Model-based)
- The un-adjusted pseudo-posterior will give the wrong coverage of uncertainty regions.


## Adjust Pseudo Posterior draws to Sandwich

- $\hat{\theta}_{m} \equiv$ sample pseudo posterior for $m=1, \ldots, M$ draws with mean $\bar{\theta}$
- $\hat{\theta}_{m}^{a}=\left(\hat{\theta}_{m}-\bar{\theta}\right) R_{2}^{-1} R_{1}+\bar{\theta}$
- where $R_{1}^{\prime} R_{1}=H_{\theta_{0}}^{-1} J_{\theta_{0}}^{\pi} H_{\theta_{0}}^{-1}$
- $R_{2}^{\prime} R_{2}=H_{\theta_{0}}^{-1}$


## Adjustment Procedure

- Procedure to compute adjustment, $\hat{\theta}_{m}^{a}$
- Input $\hat{\theta}_{m}$ drawn from single run of MCMC
- Re-sample data under sampling design
- Draw PSUs (clusters) without replacement
- Compute $\hat{H}_{\theta_{0}}$ and $\hat{J}_{\theta_{0}}^{\pi}$
- Expectations with respect to $P_{\theta_{0}}, P_{\nu}$
- Let $\mathbb{P}_{N_{\nu}}^{\pi}=\frac{1}{N_{\nu}} \sum_{i=1}^{N_{\nu}} \frac{\delta_{\nu i}}{\pi_{\nu i}} \delta\left(\mathbf{y}_{\nu i}\right)$
- $J_{\theta_{0}}^{\pi}=\operatorname{Var}_{P_{\theta_{0}}, P_{\nu}}\left[\mathbb{P}_{N_{\nu}}^{\pi} \dot{\varphi}_{\theta_{0}}\right]$
$-H_{\theta_{0}}^{\pi}=-\mathbb{E}_{P_{\theta_{0}}, P_{\nu}}\left[\mathbb{P}_{N_{\nu}}^{\pi} \ddot{\mu}_{\theta_{0}}\right]=H_{\theta_{0}}$


## R Code Schematic



## Simulation Study - Generate Population

- Binary Response: $\boldsymbol{y} \in\{0,1\}$
- Two predictors: $\boldsymbol{x}_{1}$ and $\boldsymbol{x}_{2}$
- Cluster designs: cluster level effect $z_{2} \rightarrow$ within cluster correlation
- Size measure used for sample selection is $\tilde{\boldsymbol{x}}_{2}=\boldsymbol{x}_{2}-\min \left(x_{2}\right)+1$, but neither $\tilde{\boldsymbol{x}}_{2}$ or $\boldsymbol{x}_{2}$ are available to the analyst.
- Intercept chosen so median of $\boldsymbol{\mu} \approx 0 \rightarrow$ median of $F_{l}(\boldsymbol{\mu}) \approx 0.5$. About 50/50 for 0's, 1's.


## Simulation Study - Six Sample Designs

- Weak vs. Strong within cluster dependence: DE1 and DE5 equally-weighted. DE5 replicates units within PSU.
- One Stage PPS design with/out strata: PPS1 single stage unequally-weighted. SPPS1 is stratified
- Three-Stage PPS design with/out strata: PPS3 is 3-stage. SPPS3 is stratified. Sample 40 of 200 PSUs, 5 of $10 \mathrm{HHs} / P S U, 1$ of 3 units/HH
- Sample size $n=200$.


## Joint Distribution




## Marginal Distributions



## Coverage Results for 90\% Target Nominal Coverage

| Scenario | Marginal $\theta_{0}$ |  | Marginal $\theta_{1}$ |  | Joint |  | $\theta_{0}, \theta_{1}$ | Width $\theta_{0}$ |  | Width $\theta_{1}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | $\hat{\theta}_{m}$ | $\hat{\theta}_{m}^{a}$ |  |
| DE1 | 0.89 | 0.86 | 0.89 | 0.90 | 0.93 | 0.87 | 0.52 | 0.51 | 0.64 | 0.63 |  |
| DE5 | 0.43 | 0.81 | 0.56 | 0.94 | 0.32 | 0.88 | 0.55 | 1.24 | 0.70 | 1.60 |  |
| PPS1 | 0.77 | 0.88 | 0.83 | 0.91 | 0.74 | 0.93 | 0.50 | 0.69 | 0.55 | 0.70 |  |
| SPPS1 | 0.91 | 0.84 | 0.96 | 0.96 | 0.99 | 0.88 | 0.49 | 0.41 | 0.54 | 0.55 |  |
| PPS3 | 0.74 | 0.91 | 0.79 | 0.87 | 0.75 | 0.86 | 0.51 | 0.75 | 0.57 | 0.75 |  |
| SPPS3 | 0.77 | 0.95 | 0.80 | 0.87 | 0.74 | 0.87 | 0.51 | 0.73 | 0.56 | 0.71 |  |

## Outline

1 Informative Sampling (Savitsky and Toth, 2016)
2 Theory and Examples

- Consistency (Williams and Savitsky, 2020)
- Uncertainty Quantification (Williams and Savitsky, in press)

3 Implementation Details

- Model Fitting
- Variance Estimation

4 Related and Current Works

## Model Fitting Via Stan

- Stan is a platform for statistical modeling and computation (Stan Development Team, 2016)
- Users specify log density functions
- Stan provides MCMC sampling, variational inference, or maximum likelihood optimization
- Stan interfaces with several languages, including R (Rstan)
- Requires Rtools, for compiling of C++ code.
- Two examples using Stan
- survey weighted logistic regression (Williams and Savitsky, 2020)
- survey weighted quantile regression with penalized splines (Williams and Savitsky, 2018)

NCSES
BLS

## Outline

1 Informative Sampling (Savitsky and Toth, 2016)
2 Theory and Examples

- Consistency (Williams and Savitsky, 2020)
- Uncertainty Quantification (Williams and Savitsky, in press)

3 Implementation Details

- Model Fitting
- Variance Estimation

4 Related and Current Works

## Variance Estimation

- The de-facto approach:
- approximate sampling independence of the primary sampling units (Heeringa et al., 2010).
- within-cluster dependence treated as nuisance
- Two common methods:
- Taylor linearization and replication based methods.
- A variety of implementations are available (Binder, 1996; Rao et al., 1992).


## Taylor Linearization

Let $y_{i j}$ and $w_{i j}$ be the observed data for individual $i$ in cluster $j$ of the sample. Assume the parameter $\theta$ is a vector of dimension $d$ with population model value $\theta_{0}$.

1. Approximate an estimate $\hat{\theta}$, or a 'residual' $\left(\hat{\theta}-\theta_{0}\right)$, as a weighted sum: $\hat{\theta} \approx \sum_{i, j} w_{i j} z_{i j}(\theta)$ where $z_{i j}$ is a function evaluated at the current values of $y_{i j}$, and $\hat{\theta}$ (e.g. $\left.z_{i}(\hat{\theta})=H_{\theta_{0}}^{-1} \dot{\ell}_{\hat{\theta}}\left(\mathbf{y}_{i}\right)\right)$.
2. Compute the weighted components for each cluster (e.g., primary sampling units (PSUs)): $\hat{\theta}_{j}=\sum_{i} w_{i j} z_{i j}(\theta)$.
3. Compute the variance between clusters:
$\widehat{\operatorname{Var}(\hat{\theta}})=\frac{1}{J-d} \sum_{j=1}^{J}\left(\hat{\theta}-\hat{\theta}_{j}\right)\left(\hat{\theta}-\hat{\theta}_{j}\right)^{T}$
4. For stratified designs, compute $\hat{\theta_{s}}$ and $\widehat{\operatorname{Var}\left(\hat{\theta}_{s}\right)}$ within strata and sum $\widehat{\operatorname{Var}(\hat{\theta})}=\sum_{s} \widehat{\operatorname{Var}\left(\hat{\theta_{s}}\right)}$.

BLS

## Replication

Let $y_{i j}$ and $w_{i j}$ be the observed data for individual $i$ in cluster $j$ of the sample. Assume the parameter $\theta$ is a vector of dimension $d$ with population model value $\theta_{0}$.

1. Through randomization (bootstrap), leave-one-out (jackknife), or orthogonal contrasts (balanced repeated replicates), create a set of $K$ replicate weights $\left(w_{i}\right)_{k}$ for all $i \in S$ and for every $k=1, \ldots, K$.
2. Each set of weights has a modified value (usually 0 ) for a subset of clusters, and typically has a weight adjustment to the other clusters to compensate: $\sum_{i \in S}\left(w_{i}\right)_{k}=\sum_{i \in S} w_{i}$ for every $k$.
3. Estimate $\hat{\theta}_{k}$ for each replicate $k \in 1, \ldots, K$.
4. Compute the variance between replicates:
$\widehat{\operatorname{Var}(\hat{\theta}})=\frac{1}{K-d} \sum_{k=1}^{K}\left(\hat{\theta}-\hat{\theta}_{k}\right)\left(\hat{\theta}-\hat{\theta}_{k}\right)^{T}$.
5. For stratified designs, generate replicates such that each strata is represented in every replicate.

## Challenges

There are two notable trade-offs associated with these methods:

- Taylor linearization: value $\hat{\theta}$ computed once then used in a plug in for $z_{i}(\theta)$.
- Replication methods: estimate $\hat{\theta}_{k}$ computed $K$ times.
- Sizable differences in computational effort
- Replication methods: no derivatives are needed.
- Taylor linearization: requires the calculation of a gradient to derive the analytical form of the first order approximation $z_{i}(\theta)$.
- This poses significant analytical challenges for all but the simplest models.

NCSES
BLS

## Some Improvements

- Abstraction of Derivatives (less analytic work for Taylor Linearization)
- Recent advances in algorithmic differentiation (Margossian, 2018), allows us to specify the model as a log density but only treat the gradient in the abstract without specifying it analytically.
- Implemented in Stan and Rstan (Carpenter, 2015; Stan Development Team, 2016)
- Hybrid Approach or Taylor Linearization for replicate designs (less computation for Replication approaches)
- Survey package (Lumley, 2016) to calculate replication variance of gradient $\dot{\ell}_{\theta}$
- Use plug in for $\theta$, only estimate once

$$
\left(\hat{\psi}-\psi_{0}\right)=H_{\theta_{0}}\left(\hat{\theta}-\theta_{0}\right) \approx \sum_{i \in S} w_{i} \dot{\ell}_{\hat{\theta}}\left(\mathbf{y}_{i}\right)=\sum_{i \in S} w_{i} z_{i}(\hat{\theta})
$$

with $\operatorname{Var}_{P_{\theta_{0}}, P_{\nu}}\left(\hat{\psi}-\psi_{0}\right)=J_{\theta_{0}}^{\pi}$.

## Example: Design Effect for Survey-Weighted Bayes

- Pseudo posterior $\propto$ Pseudo Likelihood $\times$ Prior

$$
p^{\pi}(\boldsymbol{\theta} \mid \mathbf{y}, \tilde{\mathbf{w}}) \propto\left[\prod_{i=1}^{n} p\left(y_{i} \mid \boldsymbol{\theta}\right)^{\tilde{w}_{i}}\right] p(\boldsymbol{\theta})
$$

- Variances Differ:
- Weighted MLE: $H_{\theta_{0}}^{-1} J_{\theta_{0}}^{\pi} H_{\theta_{0}}^{-1}$ (Robust)
- Weighted Posterior: $H_{\theta_{0}}^{-1}$ (Model-Based)
- Adjust for Design Effect: $R_{2}^{-1} R_{1}$
- $\hat{\theta}_{m} \equiv$ sample pseudo posterior for $m=1, \ldots, M$ draws with mean $\bar{\theta}$
- $\hat{\theta}_{m}^{a}=\left(\hat{\theta}_{m}-\bar{\theta}\right) R_{2}^{-1} R_{1}+\bar{\theta}$
- where $R_{1}^{\prime} R_{1}=H_{\theta_{0}}^{-1} J_{\theta_{0}}^{\pi} H_{\theta_{0}}^{-1}$
- $R_{2}^{\prime} R_{2}=H_{\theta_{0}}^{-1}$


## R Code Schematic



## Outline

1 Informative Sampling (Savitsky and Toth, 2016)
2 Theory and Examples

- Consistency (Williams and Savitsky, 2020)
- Uncertainty Quantification (Williams and Savitsky, in press)

3 Implementation Details
■ Model Fitting

- Variance Estimation

4 Related and Current Works

## Related Papers

- Consistency of the Pseudo-Posterior (Savitsky and Toth, 2016)
- Extension to multistage surveys (Williams and Savitsky, 2020)
- Extension to pairwise weights and outcomes (Williams and Savitsky, 2018)
- Extension to Divide and Conquer computational methods (Savitsky and Srivastava, 2018)
- Correction of asymptotic coverage (Williams and Savitsky, in press)
- Joint modeling of Outcome and Weights (León-Novelo and Savitsky, 2019)


## Current Work

1. Collaboration with State Department on International Polls

- BigSurv 2020
- Multinomial response - election polls

2. Mixed Models for Survey Data

- Invited Session at JSM 2020
- Savitsky and Williams (2019)

3. Pseudo-Posterior for Differential Privacy

- Invited Session at JSM 2020
- Savitsky et al. (2019)


## References I

Binder, D. A. (1996), 'Linearization methods for single phase and two-phase samples: a cookbook approach', Survey Methodology 22, 17-22.
Carpenter, B. (2015), 'Stan: A probabilistic programming language', Journal of Statistical Software

Heeringa, S. G., West, B. T. and Berglund, P. A. (2010), Applied Survey Data Analysis, Chapman and Hall/CRC.
León-Novelo, L. G. and Savitsky, T. D. (2019), 'Fully bayesian estimation under informative sampling', Electron. J. Statist. 13(1), 1608-1645.
URL: https://doi.org/10.1214/19-EJS1538
Lumley, T. (2016), 'survey: analysis of complex survey samples'. R package version 3.32 .
Margossian, C. C. (2018), 'A review of automatic differentiation and its efficient implementation', CoRR abs/1811.05031.
URL: http://arxiv.org/abs/1811.05031
Rao, J. N. K., Wu, C. F. J. and Yue, K. (1992), 'Some recent work on resampling methods for complex surveys', Survey Methodology 18, 209-217.
Savitsky, T. D. and Srivastava, S. (2018), 'Scalable bayes under informative sampling', Scandinavian Journal of Statistics 45(3), 534-556. 10.1111/sjos. 12312.
URL: http://dx.doi.org/10.1111/sjos. 12312

## References II

Savitsky, T. D. and Toth, D. (2016), 'Bayesian Estimation Under Informative Sampling', Electronic Journal of Statistics 10(1), 1677-1708.
Savitsky, T. D. and Williams, M. R. (2019), 'Bayesian Mixed Effects Model Estimation under Informative Sampling', arXiv e-prints p. arXiv:1904.07680.
Savitsky, T. D., Williams, M. R. and Hu, J. (2019), 'Bayesian pseudo posterior mechanism under differential privacy', arXiv:1909.11796.
Stan Development Team (2016), 'RStan: the R interface to Stan'. R package version 2.14.1. URL: http://mc-stan.org/
Williams, M. R. and Savitsky, T. D. (2018), 'Bayesian pairwise estimation under dependent informative sampling', Electron. J. Statist. 12(1), 1631-1661.
Williams, M. R. and Savitsky, T. D. (2020), 'Bayesian estimation under informative sampling with unattenuated dependence', Bayesian Anal. 15(1), 57-77.
URL: https://doi.org/10.1214/18-BA1143
Williams, M. R. and Savitsky, T. D. (in press), 'Uncertainty Estimation for Pseudo-Bayesian Inference Under Complex Sampling', International Statistical Review .
URL: https://doi.org/10.1111/insr. 12376

## Bonus Slides

- Stan syntax examples
- Quantile Regression Example


## Stan: Files

```
R file (.R)
library(rstan)
# compile stan code
mod = stan_model('wt_logistic.stan')
#sample stan model, given data, other inputs
sampling(object = mod, data = ...)
Stan file (.stan)
functions{ }
data{ }
parameters{ }
transformed parameters{ }
model{ }
```


## Stan File: survey weighted logistic regression

```
functions{
real wt_bin_lpmf(int[] y, vector mu, vector weights, int n){
    real check_term;
    check_term = 0.0;
    for( i in 1:n )
    {
check_term = check_term +
weights[i] * bernoulli_logit_lpmf(y[i] | mu[i]);
    }
    return check_term;
    }}
```

```
model{
```

model{
/*improper prior on theta in (-inf,inf)*/
/*improper prior on theta in (-inf,inf)*/
/* directly update the log-probability for sampling */
/* directly update the log-probability for sampling */
target += wt_bin_lpmf(y | mu, weights, n);
target += wt_bin_lpmf(y | mu, weights, n);
}

```
}
```

BLS

## Stan File: survey weighted quantile regression with splines

```
functions{
real penalize_spline_lpdf(vector theta, matrix Q,
real tau_theta, int num_bases, int degree) {
    return 0.5 * ( (num_bases-degree) * log(tau_theta) -
        tau_theta * quad_form(Q, theta) ); }
real rho_p(real p, real u){
            return .5 * (fabs(u) + (2*p - 1)*u); }
real ald_lpdf(vector y, vector mu, vector weights, real tau, real p, int n){
        real w_tot;
        real log_terms;
        real check_term;
        w_tot = sum( weights );
        log_terms = w_tot * (log(tau) + log(p) + log(1-p));
    check_term = 0.0;
    for( i in 1:n )
    {
        check_term = check_term + weights[i] * rho_p( p, (y[i]-mu[i]) );
    }
    check_term = tau * check_term;
    return log_terms - check_term; }}
```


## Stan File: survey weighted quantile regression with splines

```
model{
    tau_theta ~ gamma( 1.0, 1.0 );
    tau
    theta ~ penalize_spline(Q, tau_theta, num_knots+degree, degree);
    /* directly update the log-probability for sampling */
    target += ald_lpdf(y | mu, weights, tau, p, n);
}
~ gamma( 1.0, 1.0 );
~ gamma( 1.0, 1.0);
~ penalize_spline(Q, tau_theta, num_knots+degree, degree);
ald_lpat (y 1 mu, weights, tau, \(\mathrm{p}, \mathrm{n}\) ); \}
```


## Example: Sampling and Analyzing Spouse Pairs

Let $\delta_{i}$ and $\delta_{j}$ be indicators that individuals $i$ and $j$ are in the sample. Then the joint indicator $\delta_{i j}=\delta_{i} \delta_{j}$.

- Marginal weight $w_{i}=\delta_{i} / P\left\{\delta_{i}=1\right\}$
- Pairwise weight $\tilde{w}_{i}=\sum_{i \neq j \in D}\left(\delta_{i j} / P\left\{\delta_{i j}=1\right\}\right) /\left(N_{D}-1\right)$
- For spouses, $N_{D}=2$, so 'multiplicity' $\left(N_{D}-1\right)=1$.
- For marginal models (anyone with a spouse), use $w_{i}$
- For conditional models (both spouses in the sample), use $\tilde{w}_{i}$


## Comparing Conditional Behaviors of Spouses by Age

 2014 National Survey on Drug Use and Health- Median alchohol use (days in past month)
- By Age
- By Use of Spouse
- solid : spouse $\geq 1$
- dash : spouse $=0$
- Compare Weights
- equal, marginal, pairwise


