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Thank you!

I Terrance Savitsky for being a great collaborator and mentor.

I Brady West and Jennifer Sinibaldi for making this connection.

I Jill Esau for orchestrating.

I You all for sharing your time today!
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Bio

1. Work
I 9 years as mathematical statistical for federal government: USDA,

HHS, NSF
I Sample design, weighting, imputation, estimation, disclosure

limitation (production and methods development)

2. Consulting
I International surveys for agricultural production (USAID) and

vaccination knowledge, attitudes, and behaviors (UNICEF)

3. Research (ORCID: 0000-0001-8894-1240)
I Constrained Optimization for Survey Applications (weight

adjustment, benchmarking model estimates)
I Applying Bayesian inference methods to data from complex surveys.
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Example: Informative Sampling

I Take a sample from U.S. population of business establishments

I Single stage, fixed-size, pps sampling design

I y = (e.g., Hires, Separations)

I Size variable is total employment, x

I y 6⊥ x .

I B = 500 Monte Carlo samples at each of
nν = (100, 500, 1500, 2500) establishments
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Distributions of y in Informative Samples
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Population Inference from Informative Samples

I Goal: perform inference about a finite population generated from an
unknown model, Pθ0(y).

I Data: from under a complex sampling design distribution, Pν(δ)
I Probabilities of inclusion πi = Pr(δi = 1|y) are often associated with

the variable of interest (purposefully)

I Sampling designs are “informative”: the balance of information in the
sample 6= balance in the population.

I Biased Estimation: estimate Pθ0(y) without accounting for Pν(δ).
I Use inverse probability weights wi = 1/πi to mitigate bias.

I Incorrect Uncertainty Quantification:
I Failure to account for dependence induced by Pν(δ) leads to standard

errors and confidence intervals that are the wrong size.
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Why Bayes?

I Allows more complex, non-parametric (semi-supervised) models

I Use hierarchical modeling to capture rich dependence in data

I Have small sample properties from posterior distribution

I Full uncertainty quantification

I Gold standard for imputation

10



Pseudo Posterior

I Pseudo posterior ∝ Pseudo Likelihood × Prior

pπ (θ|y, w̃) ∝

[
n∏

i=1

p (yi |θ)w̃i

]
p (θ)

wi :=
1

πi

w̃i =
wi∑
wi

n

, i = 1, . . . , n
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Similar Posterior Geometry

NP

(
yi |µi ,Φ

−1
)wi ∝ NP

(
yi |µi , [wiΦ]−1

)

I normalize weights,
n∑

i=1

wi = n, to scale posterior
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Pseudo Posterior Contraction - Count Data
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Frequentist Consistency of a (Pseudo) Posterior

I Estimated distribution pπ (θ|y, w̃) collapses around generating
parameter θ0 with increasing population Nν and sample nν sizes.
I Evaluated with respect to joint distribution of population generation

Pθ0 (y) and the sample inclusion indicators Pν(δ).

I Conditions on the model Pθ0(y) (standard)
I Complexity of the model limited by sample size
I Prior distribution not too restrictive (e.g. point mass)

I Conditions on the sampling design Pν(δ) (new)
I Every unit in population has non-zero probability of inclusion =⇒

finite weights
I Dependence restricted to countable blocks of bounded size =⇒

arbitrary dependence within clusters, but approximate independence
between clusters.
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Simulation Example: Three-Stage Sample
Area (PPS), Household (Systematic, sorting by Size), Individual (PPS)

0

10

20

30

40

Deviation

−1.0

−0.5

0.0

0.5

1.0
Deviation

Figure: Factorization matrix (πij/(πiπj)− 1) for two PSU’s. Magnitude (left)
and Sign (right). Systematic Sampling (πij = 0). Clustering and PPS
sampling (πij > πiπj). Independent first stage sample (πij = πiπj)
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Simulation Examples: Logistic Regression

I
yi | µi

ind∼ Bern (Fl(µi )) , i = 1, . . . ,N

I
µ = −1.88 + 1.0x1 + 0.5x2

I The x1 and x2 distributions are N (0, 1) and E(r = 1/5) with rate r

I Size measure used for sample selection is x̃2 = x2 −min(x2) + 1, but
neither x̃2 or x2 are available to the analyst.

I Intercept chosen so median of µ ≈ 0→ median of Fl(µ) ≈ 0.5.
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Simulation Example: Three-Stage Sample (Cont)
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equal weights, and inverse probability weights. Top to bottom: estimated
curve, log of BIAS, log MSE. Left to right: sample size (50 to 800).
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Asymptotic Variances

I Let `θ(y) = log p(y |θ).

I Rely on the variance and expected curvature of the score function
˙̀
θ0 = ∂`

∂θ |θ=θ0 with ῭
θ0 = ∂2`

∂2θ
|θ=θ0

I Hθ0 = − 1
Nν

∑
i∈Uν

EPθ0

῭
θ0(yνi )

I Jθ0 = 1
Nν

∑
i∈Uν

EPθ0

˙̀
θ0(yνi ) ˙̀

θ0(yνi )
T

I Under correctly specified models:
I Hθ0 = Jθ0 (Bartlett’s second identity)
I Posterior variance NνV(θ|y) = H−1

θ0
same as variance of MLE

(Bernstein-von Mises)
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Scaling and Warping of Pseudo MLE
I Mispecified (under-specified) full joint sampling distribution Pν(δ).

I Failure of Bartlett’s Second Identity for composite likelihood

I Asymptotic Covariance: H−1
θ0

Jπθ0
H−1
θ0

I Simple Random Sampling: Jπθ0
= Jθ0

I Unequal weighting: Jπθ0
≥ Jθ0

Jπθ0
= Jθ0 +

1

Nν

Nν∑
i=1

EPθ0

{[
1

πνi
− 1

]
˙̀
θ0(yνi ) ˙̀

θ0(yνi )
T

}
I Shape of asymptotic distribution warped by unequal weighting ∝ 1

πνi

I If less efficient (cluster) sampling design : Jπθ0
≥ Jθ0

I If more efficient (stratified) sampling design : Jπθ0
≤ Jθ0
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Asymptotic Covariances Different

I Pseudo MLE: H−1
θ0

Jπθ0
H−1
θ0

(Robust)

I Pseudo Posterior: H−1
θ0

(Model-based)

I The un-adjusted pseudo-posterior will give the wrong coverage of
uncertainty regions.
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Adjust Pseudo Posterior draws to Sandwich

I θ̂m ≡ sample pseudo posterior for m = 1, . . . ,M draws with mean θ̄

I θ̂am =
(
θ̂m − θ̄

)
R−1

2 R1 + θ̄

I where R ′1R1 = H−1
θ0

Jπθ0
H−1
θ0

I R ′2R2 = H−1
θ0
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Adjustment Procedure

I Procedure to compute adjustment, θ̂am
I Input θ̂m drawn from single run of MCMC

I Re-sample data under sampling design

I Draw PSUs (clusters) without replacement

I Compute Ĥθ0 and Ĵπθ0

I Expectations with respect to Pθ0 ,Pν
I Let PπNν

= 1
Nν

∑Nν

i=1
δνi

πνi
δ (yνi )

I Jπθ0
= VarPθ0

,Pν

[
PπNν

˙̀
θ0

]
I Hπ

θ0
= −EPθ0

,Pν

[
PπNν

῭
θ0

]
= Hθ0
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R Code Schematic
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Simulation Study - Generate Population

I Binary Response: y ∈ {0, 1}
I Two predictors: x1 and x2

I Cluster designs: cluster level effect z2 → within cluster correlation

I Size measure used for sample selection is x̃2 = x2 −min(x2) + 1, but
neither x̃2 or x2 are available to the analyst.

I Intercept chosen so median of µ ≈ 0→ median of Fl(µ) ≈ 0.5.
About 50/50 for 0’s, 1’s.
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Simulation Study - Six Sample Designs

I Weak vs. Strong within cluster dependence: DE1 and DE5
equally-weighted. DE5 replicates units within PSU.

I One Stage PPS design with/out strata: PPS1 single stage
unequally-weighted. SPPS1 is stratified

I Three-Stage PPS design with/out strata: PPS3 is 3-stage. SPPS3
is stratified. Sample 40 of 200 PSUs, 5 of 10 HHs/PSU, 1 of 3
units/HH

I Sample size n = 200.
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Joint Distribution
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Marginal Distributions
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Coverage Results for 90% Target Nominal Coverage

Scenario Marginal θ0 Marginal θ1 Joint θ0, θ1 Width θ0 Width θ1

θ̂m θ̂am θ̂m θ̂am θ̂m θ̂am θ̂m θ̂am θ̂m θ̂am
DE1 0.89 0.86 0.89 0.90 0.93 0.87 0.52 0.51 0.64 0.63
DE5 0.43 0.81 0.56 0.94 0.32 0.88 0.55 1.24 0.70 1.60

PPS1 0.77 0.88 0.83 0.91 0.74 0.93 0.50 0.69 0.55 0.70
SPPS1 0.91 0.84 0.96 0.96 0.99 0.88 0.49 0.41 0.54 0.55

PPS3 0.74 0.91 0.79 0.87 0.75 0.86 0.51 0.75 0.57 0.75
SPPS3 0.77 0.95 0.80 0.87 0.74 0.87 0.51 0.73 0.56 0.71
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Outline

1 Informative Sampling (Savitsky and Toth, 2016)

2 Theory and Examples
Consistency (Williams and Savitsky, 2020)
Uncertainty Quantification (Williams and Savitsky, in press)

3 Implementation Details
Model Fitting
Variance Estimation

4 Related and Current Works
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Model Fitting Via Stan

I Stan is a platform for statistical modeling and computation (Stan
Development Team, 2016)
I Users specify log density functions
I Stan provides MCMC sampling, variational inference, or maximum

likelihood optimization
I Stan interfaces with several languages, including R (Rstan)

I Requires Rtools, for compiling of C++ code.

I Two examples using Stan
I survey weighted logistic regression (Williams and Savitsky, 2020)
I survey weighted quantile regression with penalized splines (Williams

and Savitsky, 2018)
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Variance Estimation

I The de-facto approach:
I approximate sampling independence of the primary sampling units

(Heeringa et al., 2010).
I within-cluster dependence treated as nuisance

I Two common methods:
I Taylor linearization and replication based methods.
I A variety of implementations are available (Binder, 1996; Rao et al.,

1992).
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Taylor Linearization

Let yij and wij be the observed data for individual i in cluster j of the
sample. Assume the parameter θ is a vector of dimension d with
population model value θ0.

1. Approximate an estimate θ̂, or a ‘residual’ (θ̂ − θ0), as a weighted
sum: θ̂ ≈

∑
i ,j wijzij(θ) where zij is a function evaluated at the

current values of yij , and θ̂ (e.g. zi (θ̂) = H−1
θ0

˙̀
θ̂(yi )).

2. Compute the weighted components for each cluster (e.g., primary
sampling units (PSUs)): θ̂j =

∑
i wijzij(θ).

3. Compute the variance between clusters:

V̂ar(θ̂) = 1
J−d

∑J
j=1(θ̂ − θ̂j)(θ̂ − θ̂j)T

4. For stratified designs, compute θ̂s and V̂ar(θ̂s) within strata and

sum V̂ar(θ̂) =
∑

s V̂ar(θ̂s).
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Replication
Let yij and wij be the observed data for individual i in cluster j of the
sample. Assume the parameter θ is a vector of dimension d with
population model value θ0.

1. Through randomization (bootstrap), leave-one-out (jackknife), or
orthogonal contrasts (balanced repeated replicates), create a set of
K replicate weights (wi )k for all i ∈ S and for every k = 1, . . . ,K .

2. Each set of weights has a modified value (usually 0) for a subset of
clusters, and typically has a weight adjustment to the other clusters
to compensate:

∑
i∈S(wi )k =

∑
i∈S wi for every k .

3. Estimate θ̂k for each replicate k ∈ 1, . . . ,K .

4. Compute the variance between replicates:

V̂ar(θ̂) = 1
K−d

∑K
k=1(θ̂ − θ̂k)(θ̂ − θ̂k)T .

5. For stratified designs, generate replicates such that each strata is
represented in every replicate.
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Challenges

There are two notable trade-offs associated with these methods:
I Taylor linearization: value θ̂ computed once then used in a plug in

for zi (θ).
I Replication methods: estimate θ̂k computed K times.
I Sizable differences in computational effort

I Replication methods: no derivatives are needed.
I Taylor linearization: requires the calculation of a gradient to derive

the analytical form of the first order approximation zi (θ).
I This poses significant analytical challenges for all but the simplest

models.
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Some Improvements
I Abstraction of Derivatives (less analytic work for Taylor

Linearization)
I Recent advances in algorithmic differentiation (Margossian, 2018),

allows us to specify the model as a log density but only treat the
gradient in the abstract without specifying it analytically.

I Implemented in Stan and Rstan (Carpenter, 2015; Stan Development
Team, 2016)

I Hybrid Approach or Taylor Linearization for replicate designs (less
computation for Replication approaches)
I Survey package (Lumley, 2016) to calculate replication variance of

gradient ˙̀
θ

I Use plug in for θ, only estimate once

(ψ̂ − ψ0) = Hθ0 (θ̂ − θ0) ≈
∑
i∈S

wi
˙̀
θ̂(yi ) =

∑
i∈S

wizi (θ̂),

with VarPθ0
,Pν (ψ̂ − ψ0) = Jπθ0

.
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Example: Design Effect for Survey-Weighted Bayes
I Pseudo posterior ∝ Pseudo Likelihood × Prior

pπ (θ|y, w̃) ∝

[
n∏

i=1

p (yi |θ)w̃i

]
p (θ)

I Variances Differ:
I Weighted MLE: H−1

θ0
Jπθ0

H−1
θ0

(Robust)
I Weighted Posterior: H−1

θ0
(Model-Based)

I Adjust for Design Effect: R−1
2 R1

I θ̂m ≡ sample pseudo posterior for m = 1, . . . ,M draws with mean θ̄

I θ̂am =
(
θ̂m − θ̄

)
R−1

2 R1 + θ̄

I where R ′1R1 = H−1
θ0

Jπθ0
H−1
θ0

I R ′2R2 = H−1
θ0
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R Code Schematic

R CodeInput Output

Stan Model

sampling
(rstan)

svrepdesign
(survey)

Survey
Design

reps

θ̄
grad log prob

(rstan)

θ̂m

Ĥθ

withReplicates
(survey)

Ĵπθ
aaply
(plyr) θ̂am
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Related Papers

I Consistency of the Pseudo-Posterior (Savitsky and Toth, 2016)

I Extension to multistage surveys (Williams and Savitsky, 2020)

I Extension to pairwise weights and outcomes (Williams and Savitsky,
2018)

I Extension to Divide and Conquer computational methods (Savitsky
and Srivastava, 2018)

I Correction of asymptotic coverage (Williams and Savitsky, in press)

I Joint modeling of Outcome and Weights (León-Novelo and
Savitsky, 2019)
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Current Work

1. Collaboration with State Department on International Polls
I BigSurv 2020

I Multinomial response - election polls

2. Mixed Models for Survey Data
I Invited Session at JSM 2020

I Savitsky and Williams (2019)

3. Pseudo-Posterior for Differential Privacy
I Invited Session at JSM 2020

I Savitsky et al. (2019)

43



References I

Binder, D. A. (1996), ‘Linearization methods for single phase and two-phase samples: a
cookbook approach’, Survey Methodology 22, 17–22.

Carpenter, B. (2015), ‘Stan: A probabilistic programming language’, Journal of Statistical
Software .

Heeringa, S. G., West, B. T. and Berglund, P. A. (2010), Applied Survey Data Analysis,
Chapman and Hall/CRC.

León-Novelo, L. G. and Savitsky, T. D. (2019), ‘Fully bayesian estimation under informative
sampling’, Electron. J. Statist. 13(1), 1608–1645.
URL: https://doi.org/10.1214/19-EJS1538

Lumley, T. (2016), ‘survey: analysis of complex survey samples’. R package version 3.32.

Margossian, C. C. (2018), ‘A review of automatic differentiation and its efficient
implementation’, CoRR abs/1811.05031.
URL: http://arxiv.org/abs/1811.05031

Rao, J. N. K., Wu, C. F. J. and Yue, K. (1992), ‘Some recent work on resampling methods
for complex surveys’, Survey Methodology 18, 209–217.

Savitsky, T. D. and Srivastava, S. (2018), ‘Scalable bayes under informative sampling’,
Scandinavian Journal of Statistics 45(3), 534–556. 10.1111/sjos.12312.
URL: http://dx.doi.org/10.1111/sjos.12312

44



References II

Savitsky, T. D. and Toth, D. (2016), ‘Bayesian Estimation Under Informative Sampling’,
Electronic Journal of Statistics 10(1), 1677–1708.

Savitsky, T. D. and Williams, M. R. (2019), ‘Bayesian Mixed Effects Model Estimation
under Informative Sampling’, arXiv e-prints p. arXiv:1904.07680.

Savitsky, T. D., Williams, M. R. and Hu, J. (2019), ‘Bayesian pseudo posterior mechanism
under differential privacy’, arXiv:1909.11796 .

Stan Development Team (2016), ‘RStan: the R interface to Stan’. R package version 2.14.1.
URL: http://mc-stan.org/

Williams, M. R. and Savitsky, T. D. (2018), ‘Bayesian pairwise estimation under dependent
informative sampling’, Electron. J. Statist. 12(1), 1631–1661.

Williams, M. R. and Savitsky, T. D. (2020), ‘Bayesian estimation under informative
sampling with unattenuated dependence’, Bayesian Anal. 15(1), 57–77.
URL: https://doi.org/10.1214/18-BA1143

Williams, M. R. and Savitsky, T. D. (in press), ‘Uncertainty Estimation for Pseudo-Bayesian
Inference Under Complex Sampling’, International Statistical Review .
URL: https://doi.org/10.1111/insr.12376

45



Bonus Slides

I Stan syntax examples

I Quantile Regression Example
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Stan: Files

R file (.R)

library(rstan)

# compile stan code

mod = stan_model(’wt_logistic.stan’)

#sample stan model, given data, other inputs

sampling(object = mod, data = ...)

Stan file (.stan)

functions{ }

data{ }

parameters{ }

transformed parameters{ }

model{ }
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Stan File: survey weighted logistic regression

functions{

real wt_bin_lpmf(int[] y, vector mu, vector weights, int n){

real check_term;

check_term = 0.0;

for( i in 1:n )

{

check_term = check_term +

weights[i] * bernoulli_logit_lpmf(y[i] | mu[i]);

}

return check_term;

}}

model{

/*improper prior on theta in (-inf,inf)*/

/* directly update the log-probability for sampling */

target += wt_bin_lpmf(y | mu, weights, n);

}
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Stan File: survey weighted quantile regression with splines

functions{

real penalize_spline_lpdf(vector theta, matrix Q,

real tau_theta, int num_bases, int degree) {

return 0.5 * ( (num_bases-degree) * log(tau_theta) -

tau_theta * quad_form(Q, theta) ); }

real rho_p(real p, real u){

return .5 * (fabs(u) + (2*p - 1)*u); }

real ald_lpdf(vector y, vector mu, vector weights, real tau, real p, int n){

real w_tot;

real log_terms;

real check_term;

w_tot = sum( weights );

log_terms = w_tot * (log(tau) + log(p) + log(1-p));

check_term = 0.0;

for( i in 1:n )

{

check_term = check_term + weights[i] * rho_p( p, (y[i]-mu[i]) );

}

check_term = tau * check_term;

return log_terms - check_term; }}

49



Stan File: survey weighted quantile regression with splines

model{

tau_theta ~ gamma( 1.0, 1.0 );

tau ~ gamma( 1.0, 1.0 );

theta ~ penalize_spline(Q, tau_theta, num_knots+degree, degree);

/* directly update the log-probability for sampling */

target += ald_lpdf(y | mu, weights, tau, p, n);

}
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Example: Sampling and Analyzing Spouse Pairs

Let δi and δj be indicators that individuals i and j are in the sample.
Then the joint indicator δij = δiδj .

I Marginal weight wi = δi/P{δi = 1}
I Pairwise weight w̃i =

∑
i 6=j∈D (δij/P{δij = 1}) /(ND − 1)

I For spouses, ND = 2, so ‘multiplicity’ (ND − 1) = 1.

I For marginal models (anyone with a spouse), use wi

I For conditional models (both spouses in the sample), use w̃i
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Comparing Conditional Behaviors of Spouses by Age

2014 National Survey on Drug Use and Health

I Median alchohol use
(days in past month)

I By Age
I By Use of Spouse

I solid : spouse ≥ 1
I dash : spouse = 0

I Compare Weights
I equal, marginal,

pairwise
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